|试卷下载
搜索
    上传资料 赚现金
    2021-2022学年基础强化冀教版九年级数学下册第二十九章直线与圆的位置关系定向训练试题
    立即下载
    加入资料篮
    2021-2022学年基础强化冀教版九年级数学下册第二十九章直线与圆的位置关系定向训练试题01
    2021-2022学年基础强化冀教版九年级数学下册第二十九章直线与圆的位置关系定向训练试题02
    2021-2022学年基础强化冀教版九年级数学下册第二十九章直线与圆的位置关系定向训练试题03
    还剩27页未读, 继续阅读
    下载需要20学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2021学年第29章 直线与圆的位置关系综合与测试精品课堂检测

    展开
    这是一份2021学年第29章 直线与圆的位置关系综合与测试精品课堂检测,共30页。

    九年级数学下册第二十九章直线与圆的位置关系定向训练

     考试时间:90分钟;命题人:数学教研组

    考生注意:

    1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟

    2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上

    3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。

    I卷(选择题  30分)

    一、单选题(10小题,每小题3分,共计30分)

    1、如图,在△ABC中,AB=AC=5,BC=8,以A为圆心作一个半径为2的圆,下列结论中正确的是(  )

    A.点B在⊙A B.点C在⊙A

    C.直线BC与⊙A相切 D.直线BC与⊙A相离

    2、平面内,⊙O的半径为3,若点P在⊙O外,则OP的长可能为(      

    A.4 B.3 C.2 D.1

    3、如图,若的半径为R,则它的外切正六边形的边长为(      

    A. B. C. D.

    4、在数轴上,点A所表示的实数为3,点B所表示的实数为a,⊙A的半径为2,下列说法错误的是(  )

    A.当a<5时,点B在⊙A B.当1<a<5时,点B在⊙A

    C.当a<1时,点B在⊙A D.当a>5时,点B在⊙A

    5、如图,相切于点经过的圆心与交于,若,则      

    A. B. C. D.

    6、圆O的半径为5cm,点A到圆心O的距离OA=4cm,则点A与圆O的位置关系为(  )

    A.点A在圆上 B.点A在圆内 C.点A在圆外 D.无法确定

    7、如图,从⊙O外一点P引圆的两条切线PAPB,切点分别是AB,若∠APB=60°,PA=5,则弦AB的长是(  )

    A. B. C.5 D.5

    8、如图,AB是⊙O的直径,CD是⊙O上两点,ADCD,过点C作⊙O的切线交AB的延长线于点E,若∠E=50°,则∠ACD等于(      

    A.40° B.50° C.55° D.60°

    9、的边经过圆心与圆相切于点,若,则的大小等于(      

    A. B. C. D.

    10、如图,在矩形ABCD中,点ECD边上,连接AE,将沿AE翻折,使点D落在BC边的点F处,连接AF,在AF上取点O,以O为圆心,线段OF的长为半径作⊙O,⊙OABAE分别相切于点GH,连接FGGH.则下列结论错误的是(      

    A. B.四边形EFGH是菱形

    C. D.

    第Ⅱ卷(非选择题  70分)

    二、填空题(5小题,每小题4分,共计20分)

    1、如图,点均在的正方形网格格点上,过三点的外接圆除经过三点外还能经过的格点数为_________.

    2、如图,在中,内切圆,则的半径为______.

    3、已知五边形的内接正五边形,则的度数为______.

    4、已知线段PQ=2cm,以P为圆心,1.5cm为半径画圆,则点Q与⊙P的位置关系是点Q在______.(填“圆内”、“圆外”或“圆上”)

    5、如图,∠1是正五边形两条对角线的夹角,则∠1=_______度.

    三、解答题(5小题,每小题10分,共计50分)

    1、如图,的直径,是半径,连接.延长至点,使,过点的延长线于点

    (1)求证:的切线;

    (2)若,求半径的长.

    2、如图,△ABC内接于⊙OAB是⊙O的直径,直线l与⊙O相切于点A,在l上取一点D使得DA=DC,线段DCAB的延长线交于点E

    (1)求证:直线DC是⊙O的切线;

    (2)若BC=4,∠CAB=30°,求图中阴影部分的面积(结果保留π).

    3、如图,⊙OABC的外接圆,∠ABC=45°,OCADADBC的延长线于DABOCE

    (1)求证:AD是⊙O的切线;

    (2)若AE=CE=2,求⊙O的半径和线段BC的长.

    4、如图,的切线,点在上,相交于的直径,连接,若

    (1)求证:平分

    (2)当时,求的半径长.

    5、如图,的直径,是圆上两点,且有,连结,作的延长线于点

    (1)求证:的切线;

    (2)若,求阴影部分的面积.(结果保留

     

    -参考答案-

    一、单选题

    1、D

    【解析】

    【分析】

    A点作AHBCH,如图,利用等腰三角形的性质得到BH=CH=BC=4,则利用勾股定理可计算出AH=3,然后根据点与圆的位置关系的判定方法对A选项和B选项进行判断;根据直线与圆的位置关系对C选项和D选项进行判断.

    【详解】

    解:过A点作AHBCH,如图,

    AB=AC

    BH=CH=BC=4,

    RtABH中,AH==3,

    AB=5>3,

    B点在⊙A外,所以A选项不符合题意;

    AC=5>3,

    C点在⊙A外,所以B选项不符合题意;

    AHBCAH=3>半径,

    ∴直线BC与⊙A相离,所以C选项不符合题意,D选项符合题意.

    故选:D.

    【点睛】

    本题考查了直线与圆的位置关系:设⊙O的半径为r,圆心O到直线l的距离为d,若直线l和⊙O相交dr;直线l和⊙O相切d=r;直线l和⊙O相离dr.也考查了点与圆的位置关系和等腰三角形的性质.

    2、A

    【解析】

    【分析】

    根据点与圆的位置关系得出OP>3即可.

    【详解】

    解:∵⊙O的半径为3,点P在⊙O外,

    OP>3,

    故选:A.

    【点睛】

    本题考查点与圆的位置关系,解答的关键是熟知点与圆的位置关系:设平面内的点与圆心的距离为d,圆的半径为r,则点在圆外dr,点在圆上d=r,点在圆内dr

    3、B

    【解析】

    【分析】

    如图连结OAOBOG,根据六边形ABCDEF为圆外切正六边形,得出∠AOB=60°△AOB为等边三角形,根据点G为切点,可得OGAB,可得OG平分∠AOB,得出∠AOC=,根据锐角三角函数求解即可.

    【详解】

    解:如图连结OAOBOG

    ∵六边形ABCDEF为圆外切正六边形,

    ∴∠AOB=360°÷6=60°,AOB为等边三角形,

    ∵点G为切点,

    OGAB

    OG平分∠AOB

    ∴∠AOC=

    ∴cos30°=

    故选择B.

    【点睛】

    本题考查圆与外切正六边形性质,等边三角形性质,锐角三角形函数,掌握圆与外切正六边形性质,等边三角形性质,锐角三角形函数是解题关键.

    4、A

    【解析】

    【分析】

    根据数轴以及圆的半径可得当d=r时,⊙A与数轴交于两点:1、5,进而根据点到圆心的距离与半径比较即可求得点与圆的位置关系,进而逐项分析判断即可

    【详解】

    解:∵圆心A在数轴上的坐标为3,圆的半径为2,

    ∴当d=r时,⊙A与数轴交于两点:1、5,

    故当a=1、5时点B在⊙A上;

    dr即当1<a<5时,点B在⊙A内;

    dr即当a<1或a>5时,点B在⊙A外.

    由以上结论可知选项B、C、D正确,选项A错误.

    故选A.

    【点睛】

    本题考查了数轴,点与圆的位置关系,掌握点与圆的位置关系是解题的关键.

    5、B

    【解析】

    【分析】

    连结CO,根据切线性质相切于点,得出OCBC,根据直角三角形两锐角互余∠COB=90°-∠B=90°-40°=50°,然后利用圆周角定理即可.

    【详解】

    解:连结CO

    相切于点

    OCBC

    ∴∠COB+∠B=90°,

    ∴∠COB=90°-∠B=90°-40°=50°,

    故选B.

    【点睛】

    本题考查圆的切线性质,直角三角形两锐角互余性质,圆周角定理,掌握圆的切线性质,直角三角形两锐角互余性质,圆周角定理是解题关键.

    6、B

    【解析】

    【分析】

    根据点与圆的位置关系的判定方法进行判断.

    【详解】

    解:∵⊙O的半径为5cm,点A到圆心O的距离为4cm,

    即点A到圆心O的距离小于圆的半径,

    ∴点A在⊙O内.

    故选:B

    【点睛】

    本题考查了点与圆的位置关系:设⊙O的半径为r,点P到圆心的距离OP=d,则有点P在圆外dr;点P在圆上d=r;点P在圆内dr

    7、C

    【解析】

    【分析】

    先利用切线长定理得到PA=PB,再利用∠APB=60°可判断△APB为等边三角形,然后根据等边三角形的性质求解.

    【详解】

    解:∵PAPB为⊙O的切线,

    PA=PB

    ∵∠APB=60°,

    ∴△APB为等边三角形,

    AB=PA=5.

    故选:C.

    【点睛】

    本题考查了切线长定理以及等边三角形的判定与性质.此题比较简单,注意掌握数形结合思想的应用.

    8、C

    【解析】

    【分析】

    连接OC,根据切线的性质可得,利用三角形内角和定理可得,根据邻补角得出,再由同弧所对的圆周角是圆心角的一半得出,利用等边对等角及三角形内角和定理即可得出结果.

    【详解】

    解:连接OC,如图所示:

    CE相切,

    故选:C.

    【点睛】

    题目主要考查直线与圆的位置关系,三角形内角和定理,圆周角定理、等边对等角求角度等,理解题意,作出辅助线,综合运用这些知识点是解题关键.

    9、A

    【解析】

    【分析】

    连接,根据圆周角定理求出,根据切线的性质得到,根据直角三角形的性质计算,得到答案.

    【详解】

    解:连接

    与圆相切于点

    故选:A.

    【点睛】

    本题考查的是切线的性质、圆周角定理,掌握圆的切线垂直于经过切点的半径是解题的关键.

    10、C

    【解析】

    【分析】

    由折叠可得∠DAE=∠FAE,∠D=∠AFE=90°,EF=ED,再根据切线长定理得到AG=AH,∠GAF=∠HAF,进而求出∠GAF=∠HAF=∠DAE=30°,据此对A作出判断;接下来延长EFAB交于点N,得到EF是⊙O的切线,ANE是等边三角形,证明四边形EFGH是平行四边形,再结合HE=EF可对B作出判断;在RtEFC中,∠C=90°,∠FEC=60°,则EF=2CE,再结合AD=DEC作出判断;由AG=AH,∠GAF=∠HAF,得出GHAO,不难判断D

    【详解】

    解:由折叠可得∠DAE=∠FAE,∠D=∠AFE=90°,EF=ED.

    ABAE都是⊙O的切线,点GH分别是切点,

    AG=AH,∠GAF=∠HAF

    ∴∠GAF=∠HAF=∠DAE=30°,

    ∴∠BAE=2∠DAE,故A正确,不符合题意;

    延长EFAB交于点N,如图:

    OFEFOF是⊙O的半径,

    EF是⊙O的切线,

    HE=EFNF=NG

    ∴△ANE是等边三角形,

    FG//HEFG=HE,∠AEF=60°,

    ∴四边形EFGH是平行四边形,∠FEC=60°,

    又∵HE=EF

    ∴四边形EFGH是菱形,故B正确,不符合题意;

    AG=AH,∠GAF=∠HAF

    GHAO,故D正确,不符合题意;

    RtEFC中,∠C=90°,∠FEC=60°,

    ∴∠EFC=30°,

    EF=2CE

    DE=2CE.

    ∵在RtADE中,∠AED=60°,

    AD=DE

    AD=2CE,故C错误,符合题意.

    故选C.

    【点睛】

    本题是一道几何综合题,考查了切线长定理及推论,切线的判定,菱形的定义,含30的直角三角形的性质,等边三角形的判定和性质,翻折变换等,正确理解翻折变换及添加辅助线是解决本题的关键.

    二、填空题

    1、5

    【解析】

    【分析】

    根据圆的确定方法做出过ABC三点的外接圆,从而得出答案.

    【详解】

    如图,分别作ABBC的中垂线,两直线的交点为O

    O为圆心、OA为半径作圆,则⊙O即为过ABC三点的外接圆,

    由图可知,⊙O还经过点DEFGH这5个格点,

    故答案为5.

    【点睛】

    此题考查了确定圆的方法,三角形的外接圆,解题的关键是根据题意确定三角形ABC外接圆的圆心.

    2、1

    【解析】

    【分析】

    根据三角形内切圆与内心的性质和三角形面积公式解答即可.

    【详解】

    解:∵∠C=90°,AC=3,AB=5,

    BC==4,

    如图,分别连接OAOBOCODOEOF

    ∵⊙OABC内切圆,DEF为切点,

    ODBCOEACOFABDEFOD=OE=OF

    SABC=SBOC+SAOC+SAOB=BCDO+ACOE+ABFO=BC+AC+AB)•OD

    ∵∠ACB=90°,

    故答案为:1.

    【点睛】

    此题考查三角形内切圆与内心,勾股定理,熟练掌握三角形内切圆的性质是解答本题的关键.

    3、72°##72度

    【解析】

    【分析】

    根据正多边形的中心角的计算公式: 计算即可.

    【详解】

    解:∵五边形ABCDE是⊙O的内接正五边形,

    ∴五边形ABCDE的中心角∠AOB的度数为 =72°,

    故答案为:72°.

    【点睛】

    本题考查的是正多边形和圆,掌握正多边形的中心角的计算公式:是解题的关键.

    4、圆外

    【解析】

    【分析】

    根据点的圆的位置关系的判定方法进行判断.

    【详解】

    解:∵⊙O的半径为1.5cm,PQ=2cm,

    ∴2>1.5,

    ∴点Q在圆外.

    故答案为:圆外.

    【点睛】

    本题考查了点与圆的位置关系:设⊙O的半径为r,点P到圆心的距离OP=d,则点P在圆外dr;点P在圆上d=r;点P在圆内dr

    5、72

    【解析】

    【分析】

    根据多边形的内角和定理及正多边形的性质即可求得结果.

    【详解】

    正五边形的每个内角为

    ∵多边形为正五边形,即AB=BC=CD,如图

    ∴△ABC、△BCD均为等腰三角形,且∠ABC=∠BCD=108°

    ∴∠1=∠BCA+∠CBD=72°

    故答案为:72

    【点睛】

    本题考查了正多边形的性质及多边形的内角和定理,三角形外角性质,等腰三角形性质等知识,掌握正多边形的性质及多边形内角和定理是本题的关键.

    三、解答题

    1、 (1)证明见解析

    (2)⊙O半径的长为

    【解析】

    【分析】

    (1)根据角度的数量关系,可得,即,进而可证的切线;

    (2)由题意知,由可得的值,由,得,在中,,求解即可.

    (1)

    证明:∵的直径

    的切线;

    (2)

    解:∵

    中,,即

    半径长为

    【点睛】

    本题考查了切线的判定,勾股定理,正切值.解题的关键在于对知识的灵活运用.

    2、 (1)见解析

    (2)

    【解析】

    【分析】

    (1)连接OC,由题意得,根据等边对等角得,即可得,则,即可得;

    (2)根据三角形的外角定理得,又根据是等边三角形,则,根据三角形内角和定理得,根据直角三角形的性质得,根据勾股定理得,用三角形OEC的面积减去扇形OCB的面积即可得.

    (1)

    证明:如图所示,连接OC

    AB的直径,直线l相切于点A

    ∴直线DC的切线.

    (2)

    解:∵

    又∵

    是等边三角形,

    中,

    ∴阴影部分的面积=

    【点睛】

    本题考查了切线,三角形的外角定理,等边三角形的判定与性质,直角三角形的性质,勾股定理,解题的关键是掌握这些知识点.

    3、 (1)见解析

    (2)4,

    【解析】

    【分析】

    (1)连接OA.由及圆周角定理求出∠OAD=90°,即可得到结论;

    (2)设⊙O的半径为R,在RtOAE中,勾股定理求出R, 延长CO交⊙OF,连接AF,证明△CEB∽△AEF,得到,由此求出⊙O的半径和线段BC的长.

    (1)

    证明:连接OA

        

    ∴∠AOC+∠OAD=180°,

    ∵∠AOC=2∠ABC=2×45°=90°,

    ∴∠OAD=90°,    

    OAAD      

    OA是半径,

    AD是⊙O的切线.         

    (2)

    解:设⊙O的半径为R,则OA=ROE=R-2.

    RtOAE中,

    解得(不合题意,舍去),

    延长CO交⊙OF,连接AF

    ∵∠AEF=∠CEB,∠B=∠AFE

    ∴△CEB∽△AEF

          

    CF是直径,

    CF=8,∠CAF=90°,

    又∵∠F=∠ABC=45°,

     ∴∠F=∠ACF=45°,

    AF=

        

    BC=    

    【点睛】

    此题考查了证明直线是圆的切线,勾股定理,相似三角形的判定及性质,直径所对的圆周角是直角的性质,等腰直角三角形的性质,正确作出辅助线解题是解题的关键.

    4、 (1)见解析

    (2)的半径长为

    【解析】

    【分析】

    (1)根据切线的性质,可得,由平行线的性质,等边对等角,等量代换即可得,进而得证;

    (2)连接,根据直径所对的圆周角是直角,勾股定理求得,证明列出比例式,代入数值求解可得,进而求得半径

    (1)

    证明:如图,连接

    的切线,

    ,即平分

    (2)

    解:如图,连接

    中,

    由勾股定理得:

    的直径,

    ,即

    解得:

    的半径长为

    【点睛】

    本题考查了切线的性质,直径所对的圆周角是直角,相似三角形的性质与判定,勾股定理,掌握圆的相关知识以及相似三角形的是解题的关键.

    5、 (1)见解析

    (2)

    【解析】

    【分析】

    1)要证明DEO的切线,所以连接OD,只要求出∠ODE90°即可解答;

    2)连接BD,利用RtADB的面积加上弓形面积即可求出阴影部分的面积.

    (1)

    证明:连接OD

    ∴∠CAD=∠BAD

    OAOD

    ∴∠OAD=∠ODA

    ∴∠CAD=∠ODA

    AEOD

    ∴∠E+ODE90°,

    DEAC

    ∴∠E90°,

    ∴∠ODE180°﹣∠E90°,

    OD是圆O的半径,

    DEO的切线;

    (2)

    连接BD

    ABO的直径,

    ∴∠ADB90°,

    ∵∠ADE60°,∠E90°,

    ∴∠CAD90°﹣∠ADE30°,

    ∴∠DAB=∠CAD30°,

    AB2BD

    BD2BA=4

    ODOB2

    ∴△ODB是等边三角形,

    ∴∠DOB60°,

    ∴△ADB的面积=ADDB

    ×2×2

    2

    OAOB

    ∴△DOB的面积=ADB的面积=

    ∴阴影部分的面积为:

    ADB的面积+扇形DOB的面积﹣△DOB的面积

    2

    ∴阴影部分的面积为:

    【点睛】

    本题考查了切线的判定与性质,圆周角定理,扇形的面积公式,勾股定理,含30°角的直角三角形,根据题目的已知条件并结合图形,添加适当的辅助线是解题的关键.

     

    相关试卷

    初中数学冀教版九年级下册第29章 直线与圆的位置关系综合与测试优秀课后练习题: 这是一份初中数学冀教版九年级下册第29章 直线与圆的位置关系综合与测试优秀课后练习题,共34页。

    初中数学冀教版九年级下册第29章 直线与圆的位置关系综合与测试精品练习题: 这是一份初中数学冀教版九年级下册第29章 直线与圆的位置关系综合与测试精品练习题,共29页。试卷主要包含了已知⊙O的半径为4,,则点A在,在平面直角坐标系中,以点等内容,欢迎下载使用。

    初中数学冀教版九年级下册第29章 直线与圆的位置关系综合与测试优秀同步训练题: 这是一份初中数学冀教版九年级下册第29章 直线与圆的位置关系综合与测试优秀同步训练题,共32页。

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        还可免费领教师专享福利「樊登读书VIP」

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        返回
        顶部
        Baidu
        map