终身会员
搜索
    上传资料 赚现金
    2021-2022学年基础强化冀教版九年级数学下册第二十九章直线与圆的位置关系章节练习试题(含答案及详细解析)
    立即下载
    加入资料篮
    2021-2022学年基础强化冀教版九年级数学下册第二十九章直线与圆的位置关系章节练习试题(含答案及详细解析)01
    2021-2022学年基础强化冀教版九年级数学下册第二十九章直线与圆的位置关系章节练习试题(含答案及详细解析)02
    2021-2022学年基础强化冀教版九年级数学下册第二十九章直线与圆的位置关系章节练习试题(含答案及详细解析)03
    还剩30页未读, 继续阅读
    下载需要20学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    初中数学冀教版九年级下册第29章 直线与圆的位置关系综合与测试优秀复习练习题

    展开
    这是一份初中数学冀教版九年级下册第29章 直线与圆的位置关系综合与测试优秀复习练习题,共33页。试卷主要包含了已知M等内容,欢迎下载使用。

    九年级数学下册第二十九章直线与圆的位置关系章节练习
    考试时间:90分钟;命题人:数学教研组
    考生注意:
    1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
    2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
    3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
    第I卷(选择题 30分)
    一、单选题(10小题,每小题3分,共计30分)
    1、已知正五边形的边长为1,则该正五边形的对角线长度为( ).
    A. B. C. D.
    2、如图,矩形ABCD中,G是BC的中点,过A、D、G三点的⊙O与边AB、CD分别交于点E、点F,给出下列判断:(1)AC与BD的交点是⊙O的圆心;(2)AF与DE的交点是⊙O的圆心;(3)AE=DF;(4)BC与⊙O相切,其中正确判断的个数是( )

    A.4 B.3 C.2 D.1
    3、已知半径为5的圆,直线l上一点到圆心的距离是5,则直线和圆的位置关系为( )
    A.相切 B.相离 C.相切或相交 D.相切或相离
    4、在同一平面内,有一半径为6的⊙O和直线m,直线m上有一点P,且OP=4;则直线m与⊙O的位置关系是 ( )
    A.相交 B.相离 C.相切 D.不能确定
    5、如图,直线交x轴于点A,交y轴于点B,点P是x轴上一动点,以点P为圆心,以1个单位长度为半径作⊙P,当⊙P与直线AB相切时,点P的坐标是(  )

    A. B.
    C.或 D.(﹣2,0)或(﹣5,0)
    6、如图,在中,以AB为直径的圆交AC于点D,的切线DE交BC于点E,若,于点E且,则的半径为( ).

    A.4 B. C.2 D.
    7、如图,边长为4的正三角形外接圆,以其各边为直径作半圆,则图中阴影部分面积为(  )

    A.12+2π B.4+π C.24+2π D.12+14π
    8、已知M(1,2),N(3,﹣3),P(x,y)三点可以确定一个圆,则以下P点坐标不满足要求的是( )
    A.(3,5) B.(﹣3,5) C.(1,2) D.(1,﹣2)
    9、如图,AB是⊙O的直径,点D在⊙O上,连接OD、BD,过点D作⊙O的切线交BA延长线于点C,若∠C=40°,则∠B的度数为(  )

    A.15° B.20° C.25° D.30°
    10、下面四个结论正确的是( )
    A.度数相等的弧是等弧 B.三点确定一个圆
    C.在同圆或等圆中,圆心角是圆周角的2倍 D.三角形的外心到三角形的三个顶点的距离相等
    第Ⅱ卷(非选择题 70分)
    二、填空题(5小题,每小题4分,共计20分)
    1、AC是⊙O的直径,弦BD⊥AC于点E,连接BC,过点O作OF⊥BC于点F,若BD=12cm,OE=cm,则OF=________cm.
    2、如图,已知正方形ABCD和正△EGF都内接于⊙O,当EF∥BC时,的度数为 _____.

    3、如图AB为⊙O的直径,点P为AB延长线上的点,过点P作⊙O的切线PE,切点为M,过A、B两点分别作PE垂线AC、BD,垂足分别为C、D,连接AM,则下列结论正确的是______(写所有正确论的号)
    ①AM平分∠CAB;②;③若AB=4,∠APE=30°,则的长为;④若AC=3BD,则有tan∠MAP=.

    4、已知的半径为5,点A到点O的距离为7,则点A在圆______.(填“内”或“上”或“外”)
    5、如图,与x轴交于、两点,,点P是y轴上的一个动点,PD切于点D,则△ABD的面积的最大值是________;线段PD的最小值是________.

    三、解答题(5小题,每小题10分,共计50分)
    1、如图,在中,,平分交于点D,点O在上,以点O为圆心,为半径的圆恰好经过点D,分别交、于点E、F.

    (1)试判断直线与的位置关系,并说明理由;
    (2)若,,求阴影部分的面积(结果保留).
    2、如图,点在轴正半轴上,,点是第一象限内的一点,以为直径的圆交轴于,两点,,两点的横坐标是方程的两个根,,连接.

    (1)如图(1),连接.
    ①求的正切值;
    ②求点的坐标.
    (2)如图(2),若点是的中点,作于点,连接,,,求证:.
    3、如图,四边形OAEC是平行四边形,以O为圆心,OC为半径的圆交CE于D,延长CO交O于B,连接AD、AB,AB是O的切线.

    (1)求证:AD是O的切线.
    (2)若O的半径为4,,求平行四边形OAEC的面积.
    4、如图,PA,PB是圆的切线,A,B为切点.

    (1)求作:这个圆的圆心O(用尺规作图,保留作图痕迹,不写作法和证明);
    (2)在(1)的条件下,延长AO交射线PB于C点,若AC=4,PA=3,请补全图形,并求⊙O的半径.
    5、如图,是的切线,点在上,与相交于,是的直径,连接,若.

    (1)求证:平分;
    (2)当,时,求的半径长.

    -参考答案-
    一、单选题
    1、C
    【解析】
    【分析】
    如图,五边形ABCDE为正五边形, 证明 再证明可得:设AF=x,则AC=1+x,再解方程即可.
    【详解】
    解:如图,五边形ABCDE为正五边形,
    ∴五边形的每个内角均为108°,

    ∴∠BAG=∠ABF=∠ACB=∠CBD= 36°,
    ∴∠BGF=∠BFG=72°,




    设AF=x,则AC=1+x,


    解得:,
    经检验:不符合题意,舍去,

    故选C
    【点睛】
    本题考查的是正多边形的性质,等腰三角形的判定与性质,相似三角形的判定与性质,证明是解本题的关键.
    2、B
    【解析】
    【分析】
    连接DG、AG,作GH⊥AD于H,连接OD,如图,先确定AG=DG,则GH垂直平分AD,则可判断点O在HG上,再根据HG⊥BC可判定BC与圆O相切;接着利用OG=OD可判断圆心O不是AC与BD的交点;然后根据四边形AEFD为⊙O的内接矩形可判断AF与DE的交点是圆O的圆心.
    【详解】
    解:连接DG、AG,作GH⊥AD于H,连接OD,如图,
    ∵G是BC的中点,
    ∴CG=BG,
    ∵CD=BA,根据勾股定理可得,
    ∴AG=DG,
    ∴GH垂直平分AD,
    ∴点O在HG上,
    ∵AD∥BC,
    ∴HG⊥BC,
    ∴BC与圆O相切;
    ∵OG=OD,
    ∴点O不是HG的中点,
    ∴圆心O不是AC与BD的交点;
    ∵∠ADF=∠DAE=90°,
    ∴∠AEF=90°,
    ∴四边形AEFD为⊙O的内接矩形,
    ∴AF与DE的交点是圆O的圆心;AE=DF;
    ∴(1)错误,(2)(3)(4)正确.
    故选:B.

    【点睛】
    本题考查了切线的判定定理:经过半径的外端且垂直于这条半径的直线是圆的切线.也考查了矩形的性质和三角形外心.
    3、C
    【解析】
    【分析】
    根据若直线上一点到圆心的距离等于圆的半径,则圆心到直线的距离等于或小于圆的半径,此时直线和圆相交或相切.
    【详解】
    解:∵半径为5的圆,直线l上一点到圆心的距离是5,
    ∴圆心到直线的距离等于或小于5,
    ∴直线和圆的位置关系为相交或相切,
    故选:C.
    【点睛】
    本题考查了直线和圆的位置关系,判断的依据是半径和直线到圆心的距离的大小关系:设⊙O的半径为r,圆心O到直线l的距离为d,①直线l和⊙O相交⇔d<r;②直线l和⊙O相切⇔d=r;③直线l和⊙O相离⇔d>r.
    4、A
    【解析】
    【分析】
    直接根据直线与圆的位置关系即可得出结论.
    【详解】
    解:∵⊙O的半径为6,直线m上有一动点P,OP=4,
    ∴直线与⊙O相交.
    故选:A.
    【点睛】
    本题考查的是直线与圆的位置关系,熟知⊙O的半径为r,圆心O到直线l的距离为d,当d=r时,直线l和⊙O相切是解答此题的关键.
    5、C
    【解析】
    【分析】
    由题意根据函数解析式求得A(-4,0),B(0.-3),得到OA=4,OB=3,根据勾股定理得到AB=5,设⊙P与直线AB相切于D,连接PD,则PD⊥AB,PD=1,根据相似三角形的性质即可得到结论.
    【详解】
    解:∵直线交x轴于点A,交y轴于点B,
    ∴令x=0,得y=-3,令y=0,得x=-4,
    ∴A(-4,0),B(0,-3),
    ∴OA=4,OB=3,
    ∴AB=5,
    设⊙P与直线AB相切于D,
    连接PD,

    则PD⊥AB,PD=1,
    ∵∠ADP=∠AOB=90°,∠PAD=∠BAO,
    ∴△APD∽△ABO,
    ∴,
    ∴,
    ∴AP= ,
    ∴OP= 或OP= ,
    ∴P或P,
    故选:C.
    【点睛】
    本题考查切线的判定和性质,一次函数图形上点的坐标特征,相似三角形的判定和性质,正确的理解题意并运用数形结合思维分析是解题的关键.
    6、C
    【解析】
    【分析】
    连接OD、BD,利用三角形外角的性质得到∠BOD=60°,证得△BOD是等边三角形,再利用切线的性质以及含30度角的直角三角形的性质求得BD=2BE=2,即可求解.
    【详解】
    解:连接OD、BD,
    ∵∠CAB=30°,OD=OA,
    ∴∠CAB=∠ODA=30°,
    ∴∠BOD=∠CAB+∠ODA=60°,
    ∵OD=OB,
    ∴△BOD是等边三角形,
    ∵DE是⊙O的切线,
    ∴∠ODE=90°,
    ∴∠BDE=30°,
    ∵DE⊥BC于点E且BE=1,
    ∴BD=2BE=2,
    ∴OB=BD=2,
    即⊙O的半径为2,
    故选:C.

    【点睛】
    本题考查了切线的性质,含30度角的直角三角形的性质,等边三角形的判定和性质,正确作出辅助线,灵活应用定理是解决问题的关键.
    7、A
    【解析】
    【分析】
    正三角形的面积加上三个小半圆的面积,再减去中间大圆的面积即可得到结果.
    【详解】
    解:正三角形的面积为:,
    三个小半圆的面积为:,中间大圆的面积为:,
    所以阴影部分的面积为:,
    故选:
    【点睛】
    本题考查了正多边形与圆,圆的面积的计算,正三角形的面积的计算,正确的识别图形是解题的关键.
    8、C
    【解析】
    【分析】
    先利用待定系数法求出直线的解析式,再把每点代入函数解析式,根据不在同一直线上的三点能确定一个圆即可得出答案.
    【详解】
    解:设直线的解析式为,
    将点代入得:,解得,
    则直线的解析式为,
    A、当时,,则此时点不在同一直线上,可以确定一个圆,此项不符题意;
    B、当时,,则此时点不在同一直线上,可以确定一个圆,此项不符题意;
    C、当时,,则此时点在同一直线上,不可以确定一个圆,此项符合题意;
    D、当时,,则此时点不在同一直线上,可以确定一个圆,此项不符题意;
    故选:C.
    【点睛】
    本题考查了确定一个圆、求一次函数的解析式,熟练掌握确定一个圆的条件是解题关键.
    9、C
    【解析】
    【分析】
    根据切线的性质得到∠CDO=90°,求得∠COD=90°-40°=50°,根据等腰三角形的性质和三角形外角的性质即可得到结论.
    【详解】
    解:∵CD是⊙O的切线,
    ∴∠CDO=90°,
    ∵∠C=40°,
    ∴∠COD=90°-40°=50°,
    ∵OD=OB,
    ∴∠B=∠ODB,
    ∵∠COD=∠B+∠ODB,
    ∴∠B=∠COD=25°,
    故选:C.
    【点睛】
    本题考查了切线的性质,圆周角定理,三角形外角的性质,等腰三角形的性质,熟练掌握切线的性质是解题的关键.
    10、D
    【解析】
    【分析】
    根据圆的有关概念、确定圆的条件、圆周角定理及三角形的外心的性质解得即可.
    【详解】
    解:A、在同圆或等圆中,能完全重合的弧才是等弧,故错误;
    B、不在同一直线上的三点确定一个圆,故错误;
    C、在同圆或等圆中,同弧或等弧所对的圆心角是圆周角的2倍,故错误;
    D、三角形的外心到三角形的三个顶点的距离相等,故正确;
    故选D.
    【点睛】
    本题考查了圆的有关的概念,属于基础知识,必须掌握.
    二、填空题
    1、或
    【解析】
    【分析】
    根据题意分两种情况并综合利用垂径定理和勾股定理以及圆的基本性质进行分析即可求解.
    【详解】
    解:如图,连接BO

    ∵AC是⊙O的直径,弦BD⊥AC于点E,BD=12cm,
    ∴,
    ∵OE=cm,BD⊥AC,
    ∴cm,
    ∴,,
    ∵OF⊥BC,
    ∴,
    ∴,
    如图,

    ∵OE=cm,BD⊥AC, ,
    ∴,
    ∵OF⊥BC,
    ∴,
    ∴.
    故答案为:或.
    【点睛】
    本题考查圆的综合问题,熟练掌握并利用垂径定理和勾股定理以及圆的基本性质进行分析是解题的关键.注意未作图题一般情况下要进行分类作图讨论.
    2、
    【解析】
    【分析】
    连接,并延长交于点,连接,先根据圆内接正多边形的性质可得,再根据圆周角定理可得,然后根据直角三角形的性质可得,从而可得,于是可得答案.
    【详解】
    解:如图,连接,并延长交于点,连接,

    正方形和正都内接于,

    由圆周角定理得:,




    则的度数为,
    故答案为:.
    【点睛】
    本题考查了圆周角定理、圆内接正多边形的性质等知识点,熟练掌握圆内接正多边形的性质是解题关键.
    3、①②④
    【解析】
    【分析】
    连接OM,由切线的性质可得,继而得,再根据平行线的性质以及等边对等角即可求得,由此可判断①;通过证明,根据相似三角形的对应边成比例可判断②;求出,利用弧长公式求得的长可判断③;由,,,可得,继而可得,,进而有,在中,利用勾股定理求出PD的长,可得,由此可判断④.
    【详解】
    解:连接OM,

    ∵PE为的切线,
    ∴,
    ∵,
    ∴,
    ∴,
    ∵,,
    ∴,
    即AM平分,故①正确;
    ∵AB为的直径,
    ∴,
    ∵,,
    ∴,
    ∴,
    ∴,故②正确;
    ∵,
    ∴,
    ∵,
    ∴,
    ∴的长为,故③错误;
    ∵,,,
    ∴,
    ∴,
    ∴,
    ∴,
    又∵,,,
    ∴,
    又∵,
    ∴,
    设,则,
    ∴,
    在中,,
    ∴,
    ∴,
    由①可得,

    故④正确,
    故答案为:①②④.
    【点睛】
    本题考查了切线的性质,平行线分线段成比例定理,相似三角形的判定与性质,勾股定理等,正确添加辅助线,熟练掌握和灵活运用相关知识是解题的关键.
    4、外
    【解析】
    【分析】
    直接根据点与圆的位置关系的判定方法进行判断.
    【详解】
    解:∵⊙O的半径是5,点A到圆心O的距离是7,
    即点A到圆心O的距离大于圆的半径,
    ∴点A在⊙O外.
    故答案为:外.
    【点睛】
    本题考查了点与圆的位置关系:设⊙O的半径为r,点P到圆心的距离OP=d,则有点P在圆外⇔d>r;点P在圆上⇔d=r;点P在圆内⇔d<r.
    5、 ##0.5
    【解析】
    【分析】
    根据题中点的坐标可得圆的直径,半径为1,分析以AB定长为底,点D在圆上,高最大为圆的半径,即可得出三角形最大的面积;连接AP,设点,根据切线的性质及勾股定理可得,由其非负性即可得.
    【详解】
    解:如图所示:当点P到如图位置时,的面积最大,

    ∵、,
    ∴圆的直径,半径为1,
    ∴以AB定长为底,点D在圆上,高最大为圆的半径,如图所示:
    此时面积的最大值为:;
    如图所示:连接AP,

    ∵PD切于点D,
    ∴,
    ∴,
    设点,
    在中,,,
    ∴,
    在中,,
    ∴,
    则,
    当时,PD取得最小值,
    最小值为,
    故答案为:①;②.
    【点睛】
    题目主要考查切线的性质及勾股定理的应用,理解题意,作出相应图形求出解析式是解题关键.
    三、解答题
    1、 (1)BC与⊙O相切,理由见详解
    (2)
    【解析】
    【分析】
    (1)根据题意先证明OD∥AC,即可证得∠ODB=90°,从而证得BC是圆的切线;
    (2)由题意直接根据三角形和扇形的面积公式进行计算即可得到结论.
    (1)
    解: BC与⊙O相切.
    证明:∵AD是∠BAC的平分线,
    ∴∠BAD=∠CAD.
    又∵OD=OA,
    ∴∠OAD=∠ODA.
    ∴∠CAD=∠ODA.
    ∴OD∥AC.
    ∴∠ODB=∠C=90°,即OD⊥BC.
    又∵BC过半径OD的外端点D,
    ∴BC与⊙O相切;
    (2)
    ∵,∠ODB=90°,,
    ∴,
    在Rt△OBD中,
    由勾股定理得:,
    ∴S△OBD= OD•BD= ,S扇形ODF= ,
    ∴阴影部分的面积=.
    【点睛】
    本题考查切线的判定和扇形面积以及勾股定理,熟练掌握切线的判定是解答本题的关键.
    2、 (1)①,②(4,3)
    (2)见解析
    【解析】
    【分析】
    (1)①过点P作PH⊥DC于H,作AF⊥PH于F,连接PD、AD,利用因式分解法解出一元二次方程,求出OD、OC,根据垂径定理求出DH,根据勾股定理计算求出半径,根据圆周角定理得到∠ADB=90°,根据正切的定义计算即可;②过点B作BE⊥x轴于点E,作AG⊥BE于G,根据平行线分线段成比例定理定理分别求出OE、BE,得到点B的坐标;
    (2)过点E作EH⊥x轴于H,证明△EHD≌△EFB,得到EH=EF,DH=BF,再证明Rt△EHC≌Rt△EFC,得到CH=CF,结合图形计算,证明结论.
    (1)
    解:①以AB为直径的圆的圆心为P,
    过点P作PH⊥DC于H,作AF⊥PH于F,连接PD、AD,
    则DH=HC=DC,四边形AOHF为矩形,
    ∴AF=OH,FH=OA=1,
    解方程x2﹣4x+3=0,得x1=1,x2=3,
    ∵OC>OD,
    ∴OD=1,OC=3,
    ∴DC=2,
    ∴DH=1,
    ∴AF=OH=2,
    设圆的半径为r,则PH2=,
    ∴PF=PH﹣FH,
    在Rt△APF中,AP2=AF2+PF2,即r2=22+(PH﹣1)2,
    解得:r=,PH=2,PF=PH﹣FH=1,
    ∵∠AOD=90°,OA=OD=1,
    ∴AD=,
    ∵AB为直径,
    ∴∠ADB=90°,
    ∴BD===3,
    ∴tan∠ABD===;
    ②过点B作BE⊥x轴于点E,交圆于点G,连接AG,
    ∴∠BEO=90°,
    ∵AB为直径,
    ∴∠AGB=90°,
    ∵∠AOE=90°,
    ∴四边形AOEG是矩形,
    ∴OE=AG,OA=EG=1,
    ∵AF=2,
    ∵PH⊥DC,
    ∴PH⊥AG,
    ∴AF=FG=2,
    ∴AG=OE=4,BG=2PF=2,
    ∴BE=3,
    ∴点B的坐标为(4,3);

    (2)
    证明:过点E作EH⊥x轴于H,
    ∵点E是的中点,
    ∴=,
    ∴ED=EB,
    ∵四边形EDCB为圆P的内接四边形,
    ∴∠EDH=∠EBF,
    在△EHD和△EFB中,

    ∴△EHD≌△EFB(AAS),
    ∴EH=EF,DH=BF,
    在Rt△EHC和Rt△EFC中,

    ∴Rt△EHC≌Rt△EFC(HL),
    ∴CH=CF,
    ∴2CF=CH+CF=CD+DH+BC﹣BF=BC+CD.

    【点睛】
    本题考查的是圆周角定理、全等三角形的判定和性质、垂径定理、勾股定理的应用,正确作出辅助线、求出圆的半径是解题的关键.
    3、 (1)见解析
    (2)32
    【解析】
    【分析】
    (1)连接OD,证明,可得,根据切线的性质可得,进而可得,即可证明AD是O的切线;
    (2)根据平行四边形OAEC的面积等于2倍即可求解.
    (1)
    证明:连接OD.

    ∵四边形OAEC是平行四边形,
    ∴,




    又∵,

    ∴,
    ∵AB与相切于点B,


    ∴,

    又∵OD是的半径,
    ∴AD为的切线.
    (2)


    在Rt△AOD中,
    ∴平行四边形OABC的面积是
    【点睛】
    本题考查了切线的性质与判定,平行四边形的性质,三角形全等的性质与判定,掌握切线的性质与判定是解题的关键.
    4、 (1)见解析;
    (2)见解析,的半径为
    【解析】
    【分析】
    (1)过点B作BP的垂线,作∠APB的平分线,二线的交点就是圆心;
    (2)根据切线的性质,利用勾股定理,建立一元一次方程求解即可.
    (1)
    如图所示,点O即为所求

    (2)
    如图,∵PA是圆的切线,AO是半径,PB是圆的切线,
    ∴∠CAP=90°,PA=PB=3,∠CBO=90°,
    ∵AC=4,
    ∴PC==5,BC=5-3=2,
    设圆的半径为x,则OC=4-x,
    ∴,
    解得x=,
    故圆的半径为.
    【点睛】
    本题考查了垂线的画法,角的平分线的画法,切线的性质,切线长定理,勾股定理,一元一次方程的解法,熟练掌握切线的性质,切线长定理和勾股定理是解题的关键.
    5、 (1)见解析
    (2)的半径长为.
    【解析】
    【分析】
    (1)根据切线的性质,可得,由平行线的性质,等边对等角,等量代换即可得,进而得证;
    (2)连接,根据直径所对的圆周角是直角,勾股定理求得,证明列出比例式,代入数值求解可得,进而求得半径
    (1)
    证明:如图,连接,
    ∵是的切线,
    ∴,
    ∵,
    ∴,
    ∴,
    ∵,
    ∴,
    ∴,即平分;

    (2)
    解:如图,连接,
    在中,,,
    由勾股定理得:,
    ∵是的直径,
    ∴,
    ∴,
    ∵,
    ∴,
    ∴,即,
    解得:,
    ∴的半径长为.

    【点睛】
    本题考查了切线的性质,直径所对的圆周角是直角,相似三角形的性质与判定,勾股定理,掌握圆的相关知识以及相似三角形的是解题的关键.

    相关试卷

    初中数学冀教版九年级下册第29章 直线与圆的位置关系综合与测试精品一课一练: 这是一份初中数学冀教版九年级下册第29章 直线与圆的位置关系综合与测试精品一课一练,共31页。试卷主要包含了下列说法正确的是等内容,欢迎下载使用。

    2020-2021学年第29章 直线与圆的位置关系综合与测试优秀达标测试: 这是一份2020-2021学年第29章 直线与圆的位置关系综合与测试优秀达标测试,共41页。试卷主要包含了如图,将的圆周分成五等分,下列说法正确的是等内容,欢迎下载使用。

    冀教版九年级下册第29章 直线与圆的位置关系综合与测试精品同步练习题: 这是一份冀教版九年级下册第29章 直线与圆的位置关系综合与测试精品同步练习题,共34页。

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        使用学贝下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        返回
        顶部
        Baidu
        map