搜索
    上传资料 赚现金
    英语朗读宝

    2021-2022学年基础强化冀教版九年级数学下册第二十九章直线与圆的位置关系章节测评练习题

    2021-2022学年基础强化冀教版九年级数学下册第二十九章直线与圆的位置关系章节测评练习题第1页
    2021-2022学年基础强化冀教版九年级数学下册第二十九章直线与圆的位置关系章节测评练习题第2页
    2021-2022学年基础强化冀教版九年级数学下册第二十九章直线与圆的位置关系章节测评练习题第3页
    还剩31页未读, 继续阅读
    下载需要20学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    冀教版九年级下册第29章 直线与圆的位置关系综合与测试精品同步练习题

    展开

    这是一份冀教版九年级下册第29章 直线与圆的位置关系综合与测试精品同步练习题,共34页。
    九年级数学下册第二十九章直线与圆的位置关系章节测评
    考试时间:90分钟;命题人:数学教研组
    考生注意:
    1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
    2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
    3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
    第I卷(选择题 30分)
    一、单选题(10小题,每小题3分,共计30分)
    1、如图,从⊙O外一点P引圆的两条切线PA,PB,切点分别是A,B,若∠APB=60°,PA=5,则弦AB的长是(  )

    A. B. C.5 D.5
    2、如图,圆形螺帽的内接正六边形的面积为24cm2,则圆形螺帽的半径是(  )

    A.1cm B.2cm C.2cm D.4cm
    3、如图,FA、FB分别与⊙O相切于A、B两点,点C为劣弧AB上一点,过点C的切线分别交FA、FB于D、E两点,若∠F=60°,△FDE的周长为12,则⊙O的半径长为(  )

    A. B.2 C.2 D.3
    4、如图,为正六边形边上一动点,点从点出发,沿六边形的边以1cm/s的速度按逆时针方向运动,运动到点停止.设点的运动时间为,以点、、为顶点的三角形的面积是,则下列图像能大致反映与的函数关系的是( )

    A. B.
    C. D.
    5、如图,为的直径,为外一点,过作的切线,切点为,连接交于,,点在右侧的半圆周上运动(不与,重合),则的大小是( )

    A.19° B.38° C.52° D.76°
    6、如图,AB是⊙O的直径,C,D是⊙O上两点,AD=CD,过点C作⊙O的切线交AB的延长线于点E,若∠E=50°,则∠ACD等于( )

    A.40° B.50° C.55° D.60°
    7、已知⊙O的半径为5,若点P在⊙O内,则OP的长可以是(  )
    A.4 B.5 C.6 D.7
    8、如图,在Rt△ABC中,,,,以边上一点为圆心作,恰与边,分别相切于点,,则阴影部分的面积为( )

    A. B. C. D.
    9、如图,PA,PB是⊙O的切线,A,B为切点,PA=4,则PB的长度为( )

    A.3 B.4 C.5 D.6
    10、如图,与相切于点,连接交于点,点为优弧上一点,连接,,若,的半径,则的长为( )

    A.4 B. C. D.1
    第Ⅱ卷(非选择题 70分)
    二、填空题(5小题,每小题4分,共计20分)
    1、如图,是的直径,是的切线,切点为,交于点,点是的中点.若的半径为,,,则阴影部分的面积为________.

    2、如图,在矩形中,是边上的点,经过,,三点的与相切于点.若,,则的半径是__________.

    3、一个直角三角形的斜边长cm,两条直角边长的和是6cm,则这个直角三角形外接圆的半径为______cm,直角三角形的面积是________.
    4、如图,、分别与相切于A、B两点,若,则的度数为________.

    5、已知正三角形的边心距为,则正三角形的边长为______.
    三、解答题(5小题,每小题10分,共计50分)
    1、如图,直线MN交⊙O于A,B两点,AC是直径,AD平分∠CAM交⊙O于D,过D作DE⊥MN于E.

    (1)求证:DE是⊙O的切线;
    (2)若DE=8,AE=6,求⊙O的半径.
    2、如图,PA,PB是圆的切线,A,B为切点.

    (1)求作:这个圆的圆心O(用尺规作图,保留作图痕迹,不写作法和证明);
    (2)在(1)的条件下,延长AO交射线PB于C点,若AC=4,PA=3,请补全图形,并求⊙O的半径.
    3、如图,在平面直角坐标系xOy中,点A与点B的坐标分别是(1,0),(7,0).

    (1)对于坐标平面内的一点P,给出如下定义:如果∠APB=45°,那么称点P为线段AB的“完美点”.
    ①设A、B、P三点所在圆的圆心为C,则点C的坐标是    ,⊙C的半径是    ;
    ②y轴正半轴上是否有线段AB的“完美点”?如果有,求出“完美点”的坐标;如果没有,请说明理由;
    (2)若点P在y轴负半轴上运动,则当∠APB的度数最大时,点P的坐标为    .
    4、【提出问题】如图①,已知直线l与⊙O相离,在⊙O上找一点M,使点M到直线l的距离最短.

    (1)小明给出下列解答,请你补全小明的解答.
    小明的解答
    过点O作ON⊥l,垂足为N,ON与⊙O的交点M即为所求,此时线段MN最短.
    理由:不妨在⊙O上另外任取一点P,过点P作PQ⊥l,垂足为Q,连接OP,OQ.
    ∵OP+PQ>OQ,OQ>ON,
    ∴ .
    又ON=OM+MN;
    ∴OP+PQ>OM+MN.
    又 ,
    ∴ .
    (2)【操作实践】如图②,已知直线l和直线外一点A,线段MN的长度为1.请用直尺和圆规作出满足条件的某一个⊙O,使⊙O经过点A,且⊙O上的点到直线l的距离的最小值为1.(不写作法,保留作图痕迹并用水笔加黑描粗)
    (3)【应用尝试】如图③,在Rt△ABC中,∠C=90,∠B=30,AB=8,⊙O经过点A,且⊙O上的点到直线BC的距离的最小值为2,距离最小值为2时所对应的⊙O上的点记为点P,若点P在△ABC的内部(不包括边界),则⊙O的半径r的取值范围是 .
    5、如图,是的直径,是半径,连接,.延长至点,使,过点作交的延长线于点.

    (1)求证:是的切线;
    (2)若,,求半径的长.

    -参考答案-
    一、单选题
    1、C
    【解析】
    【分析】
    先利用切线长定理得到PA=PB,再利用∠APB=60°可判断△APB为等边三角形,然后根据等边三角形的性质求解.
    【详解】
    解:∵PA,PB为⊙O的切线,
    ∴PA=PB,
    ∵∠APB=60°,
    ∴△APB为等边三角形,
    ∴AB=PA=5.
    故选:C.
    【点睛】
    本题考查了切线长定理以及等边三角形的判定与性质.此题比较简单,注意掌握数形结合思想的应用.
    2、D
    【解析】
    【分析】
    根据圆内接正六边形的性质可得△AOB是正三角形,由面积公式可求出半径.
    【详解】
    解:如图,由圆内接正六边形的性质可得△AOB是正三角形,过作于

    设半径为r,即OA=OB=AB=r,
    OM=OA•sin∠OAB=,
    ∵圆O的内接正六边形的面积为(cm2),
    ∴△AOB的面积为(cm2),
    即,

    解得r=4,
    故选:D.
    【点睛】
    本题考查正多边形和圆,作边心距转化为直角三角形的问题是解决问题的关键.
    3、C
    【解析】
    【分析】
    根据切线长定理可得,、、,再根据∠F=60°,可知为等边三角形,,再△FDE的周长为12,可得,求得,再作,即可求解.
    【详解】
    解:FA、FB分别与⊙O相切于A、B两点,过点C的切线分别交FA、FB于D、E两点,
    则:、、,,
    ∵∠F=60°,
    ∴为等边三角形,,
    ∵△FDE的周长为12,即,
    ∴,即,
    作,如下图:

    则,,
    ∴,
    设,则,由勾股定理可得:,
    解得,,
    故选C
    【点睛】
    此题考查了圆的有关性质,切线的性质、切线长定理,垂径定理以及等边三角形的判定与性质,解题的关键是灵活运用相关性质进行求解.
    4、A
    【解析】
    【分析】
    设正六边形的边长为1,当在上时,过作于 而 求解此时的函数解析式,当在上时,延长交于点 过作于 并求解此时的函数解析式,当在上时,连接 并求解此时的函数解析式,由正六边形的对称性可得:在上的图象与在上的图象是对称的,在上的图象与在上的图象是对称的,从而可得答案.
    【详解】
    解:设正六边形的边长为1,当在上时,
    过作于 而




    当在上时,延长交于点 过作于

    同理:
    则为等边三角形,



    当在上时,连接

    由正六边形的性质可得:

    由正六边形的对称性可得: 而


    由正六边形的对称性可得:在上的图象与在上的图象是对称的,
    在上的图象与在上的图象是对称的,
    所以符合题意的是A,
    故选A
    【点睛】
    本题考查的是动点问题的函数图象,锐角三角函数的应用,正多边形的性质,清晰的分类讨论是解本题的关键.
    5、B
    【解析】
    【分析】
    连接 由为的直径,求解 结合为的切线,求解 再利用圆周角定理可得答案.
    【详解】
    解:连接 为的直径,




    为的切线,


    故选B
    【点睛】
    本题考查的是三角形的内角和定理,直径所对的圆周角是直角,圆周角定理,切线的性质定理,熟练运用以上知识逐一求解相关联的角的大小是解本题的关键.
    6、C
    【解析】
    【分析】
    连接OC,根据切线的性质可得,利用三角形内角和定理可得,根据邻补角得出,再由同弧所对的圆周角是圆心角的一半得出,利用等边对等角及三角形内角和定理即可得出结果.
    【详解】
    解:连接OC,如图所示:

    ∵CE与相切,
    ∴,
    ∴,
    ∵,
    ∴,
    ∴,
    ∴,
    ∵,
    ∴,
    故选:C.
    【点睛】
    题目主要考查直线与圆的位置关系,三角形内角和定理,圆周角定理、等边对等角求角度等,理解题意,作出辅助线,综合运用这些知识点是解题关键.
    7、A
    【解析】
    【分析】
    根据点与圆的位置关系可得,由此即可得出答案.
    【详解】
    解:的半径为5,点在内,

    观察四个选项可知,只有选项A符合,
    故选:A.
    【点睛】
    本题考查了点与圆的位置关系,熟练掌握点与圆的位置关系(圆内、圆上、圆外)是解题关键.
    8、A
    【解析】
    【分析】
    连结OC,根据切线长性质DC=AC,OC平分∠ACD,求出∠OCD=∠OCA==30°,利用在Rt△ABC中,AC=ABtanB=3×,在Rt△AOC中,∠ACO=30°,AO=ACtan30°=,利用三角形面积公式求出,,再求出扇形面积,利用割补法求即可.
    【详解】
    解:连结OC,
    ∵以边上一点为圆心作,恰与边,分别相切于点A, ,
    ∴DC=AC,OC平分∠ACD,
    ∵,,
    ∴∠ACD=90°-∠B=60°,
    ∴∠OCD=∠OCA==30°,
    在Rt△ABC中,AC=ABtanB=3×,
    在Rt△AOC中,∠ACO=30°,AO=ACtan30°=,
    ∴OD=OA=1,DC=AC=,
    ∴,,
    ∵∠DOC=360°-∠OAC-∠ACD-∠ODC=360°-90°-90°-60°=120°,
    ∴,
    S阴影=.
    故选择A.

    【点睛】
    本题考查切线长性质,锐角三角形函数,扇形面积,三角形面积,角的和差计算,割补法求阴影面积,掌握切线长性质,锐角三角形函数,扇形面积,三角形面积,角的和差计算,割补法求阴影面积是解题关键.
    9、B
    【解析】
    【分析】
    由切线的性质可推出,.再根据直角三角形全等的判定条件“HL”,即可证明,即得出.
    【详解】
    ∵PA,PB是⊙O的切线,A,B为切点,
    ∴,,
    ∴在和中,,
    ∴,
    ∴.
    故选:B
    【点睛】
    本题考查切线的性质,三角形全等的判定和性质.熟练掌握切线的性质是解答本题的关键.
    10、B
    【解析】
    【分析】
    连接OB,根据切线性质得∠ABO=90°,再根据圆周角定理求得∠AOB=60°,进而求得∠A=30°,然后根据含30°角的直角三角形的性质解答即可.
    【详解】
    解:连接OB,
    ∵AB与相切于点B,
    ∴∠ABO=90°,
    ∵∠BDC=30°,
    ∴∠AOB=2∠BDC=60°,
    在Rt△ABO中,∠A=90°-60°=30°,OB=OC=2,
    ∴OA=2OB=4,
    ∴,
    故选:B.

    【点睛】
    本题考查切线的性质、圆周角定理、直角三角形的锐角互余、含30°角的直角三角形性质、勾股定理,熟练掌握相关知识的联系与运用是解答的关键.
    二、填空题
    1、
    【解析】
    【分析】
    根据题意先得出△AOE≌△DOE,进而计算出∠AOD=2∠B=100°,利用四边形ODEA的面积减去扇形的面积计算图中阴影部分的面积.
    【详解】
    解:连接EO、DO,

    ∵点E是AC的中点,O点为AB的中点,
    ∴OE∥BC,
    ∴∠AOE=∠B,∠EOD=∠BDO,
    ∵OB=OD,
    ∴∠B=∠BDO,
    ∴∠AOE =∠EOD,
    在△AOE和△DOE中

    ∴△AOE≌△DOE,
    ∵点E是AC的中点,
    ∴AE=AC=2.4,
    ∵∠AOD=2∠B=2×50°=100°,
    ∴图中阴影部分的面积=2•×2×2.4-=.
    故答案为:.
    【点睛】
    本题考查切线的性质以及圆周角定理和扇形的面积公式和全等三角形判定性质,注意掌握圆的切线垂直于经过切点的半径.若出现圆的切线,必连过切点的半径,构造定理图,得出垂直关系.
    2、##
    【解析】
    【分析】
    连接EO,并延长交圆于点G,在Rt△DEF中求出EF的值,再证明△DEF∽△FGE,然后根据相似三角形的性质即可求解.
    【详解】
    解:连接EO,并延长交圆于点G,

    ∵四边形是矩形,
    ∴CD=,∠D=90°,
    ∵与相切于点,
    ∴OE⊥CD,再结合矩形的性质可得:
    ∴DE=CE=3.
    ∵,
    ∴EF=.
    ∵与相切于点,
    ∴∠GED=90°.
    ∵GE是直径,
    ∴∠GFE=90°,
    ∴∠DEF+∠GEF=90°,∠EGF+∠GEF=90°,
    ∴∠DEF=∠EGF.
    ∵∠D=∠∠GFE=90°,
    ∴△DEF∽△FGE,
    ∴,
    ∴,
    ∴GE=,
    ∴的半径是,
    故答案为;.
    【点睛】
    本题考查了矩形的性质,勾股定理,切线的性质,以及相似三角形的判定与性质,熟练掌握相似三角形的判定与性质是解答本题的关键.
    3、 4
    【解析】
    【分析】
    设一直角边长为x,另一直角边长为(6-x)根据勾股定理,解一元二次方程求出,根据这个直角三角形的斜边长为外接圆的直径,可求外接圆的半径为cm,利用三角形面积公式求即可.
    【详解】
    解:设一直角边长为x,另一直角边长为(6-x),
    ∵三角形是直角三角形,
    ∴根据勾股定理,
    整理得:,
    解得,
    这个直角三角形的斜边长为外接圆的直径,
    ∴外接圆的半径为cm,
    三角形面积为.
    故答案为;.
    【点睛】
    本题考查直角三角形的外接圆,直角所对弦性质,勾股定理,一元二次方程,三角形面积,掌握以上知识是解题关键.
    4、
    【解析】
    【分析】
    根据已知条件可得出,,再利用圆周角定理得出即可.
    【详解】
    解:、分别与相切于、两点,
    ,,



    故答案为:.
    【点睛】
    本题考查的知识点是切线的性质以及圆周角定理,掌握以上知识点是解此题的关键.
    5、6
    【解析】
    【分析】
    直接利用正三角形的性质得出BO=2DO=2,再由勾股定理求出BD的长即可解决问题.
    【详解】
    解:如图所示:连接BO,

    由题意可得,OD⊥BC,OD=,∠OBD=30°,
    故BO=2DO=2.BC=2BD
    由勾股定理得,

    故答案为:6.
    【点睛】
    此题主要考查了正多边形和圆,正确掌握正三角形的性质是解题关键.
    三、解答题
    1、 (1)见解析
    (2)
    【解析】
    【分析】
    (1)连接OD,根据等腰三角形的性质和角平分线定义证得∠ODA=∠DAE,可证得DO∥MN,根据平行线的性质和切线的判定即可证的结论;
    (2)连接CD,先由勾股定理求得AD,连接CD,根据圆周角定理和相似三角形的判定证明△ACD∽△ADE,然后根据相似三角形的性质求解AC即可求解.
    (1)
    证明:连接OD,
    ∵OA=OD,
    ∴∠OAD=∠ODA,
    ∵AD平分∠CAM,∠OAD=∠DAE,
    ∴∠ODA=∠DAE,
    ∴DO∥MN,
    ∵DE⊥MN,
    ∴DE⊥OD,
    ∵D在⊙O上,
    ∴DE是⊙O的切线;
    (2)
    解:∵∠AED=90°,DE=8,AE=6,
    ∴AD==10,
    连接CD,∵AC是⊙O的直径,
    ∴∠ADC=∠AED=90°,
    ∵∠CAD=∠DAE,
    ∴△ACD∽△ADE,
    ∴,即,
    ∴AC=,
    ∴⊙O的半径是.

    【点睛】
    本题考查等腰三角形的性质、角平分线的定义、平行线的判定与性质、切线的判定、勾股定理、圆周角定理、相似三角形的判定与性质等知识,熟练掌握相关知识的联系与运用是解答的关键.
    2、 (1)见解析;
    (2)见解析,的半径为
    【解析】
    【分析】
    (1)过点B作BP的垂线,作∠APB的平分线,二线的交点就是圆心;
    (2)根据切线的性质,利用勾股定理,建立一元一次方程求解即可.
    (1)
    如图所示,点O即为所求

    (2)
    如图,∵PA是圆的切线,AO是半径,PB是圆的切线,
    ∴∠CAP=90°,PA=PB=3,∠CBO=90°,
    ∵AC=4,
    ∴PC==5,BC=5-3=2,
    设圆的半径为x,则OC=4-x,
    ∴,
    解得x=,
    故圆的半径为.
    【点睛】
    本题考查了垂线的画法,角的平分线的画法,切线的性质,切线长定理,勾股定理,一元一次方程的解法,熟练掌握切线的性质,切线长定理和勾股定理是解题的关键.
    3、 (1)①(4,3)或C(4,−3),,②,
    (2)
    【解析】
    【分析】
    (1)①在x轴的上方,作以AB为斜边的等腰直角三角形△ACB,易知A,B,P三点在⊙C上,圆心C的坐标为(4,3),半径为3,根据对称性可知点C(4,−3)也满足条件;②当圆心为C(4,3)时,过点C作CD⊥y轴于D,则D(0,3),CD=4,根据⊙C的半径得⊙C与y轴相交,设交点为,,此时,在y轴的正半轴上,连接、、CA,则==CA =r=3,得,即可得;
    (2)如果点P在y轴的负半轴上,设此时圆心为E,则E在第四象限,在y轴的负半轴上任取一点M(不与点P重合),连接MA,MB,PA,PB,设MB交于⊙E于点N,连接NA,则∠APB=∠ANB,∠ANB是△MAN的外角,∠ANB>∠AMB,即∠APB>∠AMB,过点E作EF⊥x轴于F,连接EA,EP,则AF=AB=3,OF=4,四边形OPEF是矩形,OP=EF,PE=OF=4,得,则,即可得.
    (1)
    ①如图1中,

    在x轴的上方,作以AB为斜边的等腰直角三角形△ACB,易知A,B,P三点在⊙C上,
    圆心C的坐标为(4,3),半径为3,
    根据对称性可知点C(4,−3)也满足条件,
    故答案是:(4,3)或C(4,−3),,
    ②y轴的正半轴上存在线段AB的“等角点”。
    如图2所示,当圆心为C(4,3)时,过点C作CD⊥y轴于D,则D(0,3),CD=4,

    ∵⊙C的半径,
    ∴⊙C与y轴相交,
    设交点为,,此时,在y轴的正半轴上,
    连接、、CA,则==CA =r=3,
    ∵CD⊥y轴,CD=4,,
    ∴,
    ∴,;
    当圆心为C(4,-3)时,点P在y轴的负半轴上,不符合题意;
    故答案为:,
    (2)
    当过点A,B的圆与y轴负半轴相切于点P时,∠APB最大,理由如下:
    如果点P在y轴的负半轴上,设此时圆心为E,则E在第四象限,
    如图3所示,在y轴的负半轴上任取一点M(不与点P重合),
    连接MA,MB,PA,PB,设MB交于⊙E于点N,连接NA,

    ∵点P,点N在⊙E上,
    ∴∠APB=∠ANB,
    ∵∠ANB是△MAN的外角,
    ∴∠ANB>∠AMB,
    即∠APB>∠AMB,
    此时,过点E作EF⊥x轴于F,连接EA,EP,则AF=AB=3,OF=4,
    ∵⊙E与y轴相切于点P,则EP⊥y轴,
    ∴四边形OPEF是矩形,OP=EF,PE=OF=4,
    ∴⊙E的半径为4,即EA=4,
    ∴在Rt△AEF中,,
    ∴,
    即 .
    故答案为:
    【点睛】
    本题考查了圆与三角形,勾股定理,三角形的外角,矩形的性质,解题的关键是掌握这些知识点.
    4、 (1)OP+PQ>ON; OP=OM;PQ>MN
    (2)见解析
    (3)1<r<4
    【解析】
    【分析】
    (1)利用两点之间线段最短解答即可;
    (2)过点A作l的线AB,截取BC=MN,以AC为直径作⊙O;
    (3)作AC的垂直平分线,交AC于F,交AB于E,以AF为直径作圆,过点A和点E作⊙O′,使⊙O′切EF于E,求出⊙O和⊙O′的半径,从而求出半径r的范围.
    (1)
    理由:不妨在⊙O上另外任取一点P,过点P作PQ⊥l,垂足为Q,连接OP,OQ.
    ∵OP+PQ>OQ,OQ>ON,
    ∴OP+PQ>ON.
    又ON=OM+MN;
    ∴OP+PQ>OM+MN.
    又 OP=OM,
    ∴PQ>MN.
    故答案为:OP+PQ>ON, OP=OM,PQ>MN;
    (2)
    解:如图,

    ⊙O是求作的图形;
    (3)
    (3)如图2,

    作AC的垂直平分线,交AC于F,交AB于E,以AF为直径作圆,过点A和点E作⊙O′,使⊙O′切EF于E,
    ∴∠FEO′=∠AFE=90°,
    ∴AF∥EO′,
    ∴∠AEO′=∠BAC=60°,
    ∵AO′=EO′,
    ∴△ADO′是等边三角形,
    ∴AE=AO′,
    ∵AB=8,∠B=30°,
    ∴AC=AB=4,
    ∴AF=2,
    ∴⊙O的半径是1,
    ∴AE=AB=4,
    ∴1<r<4,
    故答案是:1<r<4.
    【点睛】
    本题考查了与圆的有关位置,等边三角形判定和性质,尺规作图等知识,解决问题的关键是找出临界位置,作出图形.
    5、 (1)证明见解析
    (2)⊙O半径的长为
    【解析】
    【分析】
    (1)根据角度的数量关系,可得,即,进而可证是的切线;
    (2)由题意知,,由可得的值,由,知,,得,在中,,求解即可.
    (1)
    证明:∵是的直径




    ∴,

    ∴是的切线;
    (2)
    解:∵,



    ∵,

    ∴,


    ∴,
    在中,,即

    ∴半径长为.
    【点睛】
    本题考查了切线的判定,勾股定理,正切值.解题的关键在于对知识的灵活运用.

    相关试卷

    2020-2021学年第29章 直线与圆的位置关系综合与测试优秀达标测试:

    这是一份2020-2021学年第29章 直线与圆的位置关系综合与测试优秀达标测试,共41页。试卷主要包含了如图,将的圆周分成五等分,下列说法正确的是等内容,欢迎下载使用。

    冀教版九年级下册第29章 直线与圆的位置关系综合与测试优秀练习:

    这是一份冀教版九年级下册第29章 直线与圆的位置关系综合与测试优秀练习,共35页。

    初中数学冀教版九年级下册第29章 直线与圆的位置关系综合与测试优秀综合训练题:

    这是一份初中数学冀教版九年级下册第29章 直线与圆的位置关系综合与测试优秀综合训练题,共38页。

    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map