数学九年级下册第29章 直线与圆的位置关系综合与测试精品练习题
展开九年级数学下册第二十九章直线与圆的位置关系定向测评
考试时间:90分钟;命题人:数学教研组
考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)
一、单选题(10小题,每小题3分,共计30分)
1、如图,PA、PB是的切线,A、B为切点,连接OB、AB,若,则的度数为( )
A.50° B.55° C.65° D.70°
2、如图,正五边形ABCDE内接于⊙O,则∠CBD的度数是( )
A.30° B.36° C.60° D.72°
3、如图,有一个亭子,它的地基是边长为4m的正六边形,则地基的面积为( )
A.4m2 B.12m2 C.24m2 D.24m2
4、如图,等边△ABC内接于⊙O,D是上任一点(不与B、C重合),连接BD、CD,AD交BC于E,CF切⊙O于点C,AF⊥CF交⊙O于点G.下列结论:①∠ADC=60°;②DB2=DE•DA;③若AD=2,则四边形ABDC的面积为;④若CF=2,则图中阴影部分的面积为.正确的个数为( )
A.1个 B.2个 C.3个 D.4个
5、如图,PA,PB是⊙O的切线,A,B是切点,点C为⊙O上一点,若∠ACB=70°,则∠P的度数为( )
A.70° B.50° C.20° D.40°
6、已知正三角形外接圆半径为,这个正三角形的边长是( )
A. B. C. D.
7、已知的半径为5cm,点P到圆心的距离为4cm,则点P和圆的位置关系( )
A.点在圆内 B.点在圆外 C.点在圆上 D.无法判断
8、如图,AB是⊙O的直径,点M在BA的延长线上,MA=AO,MD与⊙O相切于点D,BC⊥AB交MD的延长线于点C,若⊙O的半径为2,则BC的长是( )
A.4 B. C. D.3
9、在同一平面内,有一半径为6的⊙O和直线m,直线m上有一点P,且OP=4;则直线m与⊙O的位置关系是 ( )
A.相交 B.相离 C.相切 D.不能确定
10、已知半径为5的圆,直线l上一点到圆心的距离是5,则直线和圆的位置关系为( )
A.相切 B.相离 C.相切或相交 D.相切或相离
第Ⅱ卷(非选择题 70分)
二、填空题(5小题,每小题4分,共计20分)
1、《九章算术》是我国古代的数学名著,书中有这样的一个问题:“今有勾八步,股十五步,问勾中容圆径几何?”.其意思是:“如图,现有直角三角形,勾(短直角边)长为 8 步,股(长直角边)长为 15 步,问该直角三角形所能容纳的最大圆的直径是多少?”答:该直角三角形所能容纳的最大圆的直径是______步.
2、如图,点,,均在的正方形网格格点上,过,,三点的外接圆除经过,,三点外还能经过的格点数为_________.
3、如图,AB是⊙O的直径,AC是⊙O的弦,过点C的切线交AB的延长线于点D.若∠A=30°,则∠D的度数为______°.
4、如图,PA,PB是的切线,切点分别为A,B.若,,则AB的长为______.
5、如图,、是的切线,其中、为切点,点在上,,则______.
三、解答题(5小题,每小题10分,共计50分)
1、如图,中,.
(1)用直尺和圆规作,使圆心在边上,且与、所在直线相切(不写作法,保留作图痕迹);
(2)在(1)的条件下,再从以下两个条件①“,的周长为12cm;②,”中选择一个作为条件,并求的半径.
2、苏科版教材八年级下册第94页第19题,小明在学过圆之后,对该题进行重新探究,请你和他一起完成问题探究.
【问题探究】小明把原问题转化为动点问题,如图1,在边长为6cm的正方形ABCD中,点E从点A出发,沿边AD向点D运动,同时,点F从点B出发,沿边BA向点A运动,它们的运动速度都是2cm/s,当点E运动到点D时,两点同时停止运动,连接CF、BE交于点M,设点E, F运动时问为t秒.
(1)【问题提出】如图1,点E,F分别在方形ABCD中的边AD、AB上,且,连接BE、CF交于点M,求证:.请你先帮小明加以证明.
(2)如图1,在点E、F的运动过程中,点M也随之运动,请直接写出点M的运动路径长 cm.
(3)如图2,连接CE,在点E、F的运动过程中.
①试说明点D在△CME的外接圆O上;
②若①中的O与正方形的各边共有6个交点,请直接写出t的取值范围.
3、如图,AB是ΘO的直径,弦AD平分∠BAC,过点D作DE⊥AC,垂足为E.
(1)判断DE所在直线与ΘO的位置关系,并说明理由;
(2)若AE=4,ED=2,求ΘO的半径.
4、如图,是的切线,点在上,与相交于,是的直径,连接,若.
(1)求证:平分;
(2)当,时,求的半径长.
5、如图,在中,,平分,与交于点,,垂足为,与交于点,经过,,三点的与交于点.
(1)求证是的切线;
(2)若,,求的半径.
-参考答案-
一、单选题
1、A
【解析】
【分析】
根据切线的性质得出PA=PB,∠PBO=90°,再根据三角形内角和定理求解即可.
【详解】
∵PA、PB是⊙O的切线,
∴PA=PB,∠OBP=90°,
又∵∠ABO=25°,
∴∠PBA=90°-25°=65°=∠PAB,
∴∠P=180°-65°-65°=50°,
故选:A.
【点睛】
本题考查切线的性质,三角形内角和定理,掌握切线的性质和等腰三角形的性质,三角形内角和为180°是解题的关键.
2、B
【解析】
【分析】
求出正五边形的一个内角的度数,再根据等腰三角形的性质和三角形的内角和定理计算即可.
【详解】
解:∵正五边形ABCDE中,
∴∠BCD==108°,CB=CD,
∴∠CBD=∠CDB=(180°-108°)=36°,
故选:B.
【点睛】
本题考查了正多边形和圆,求出正五边形的一个内角度数是解决问题的关键.
3、D
【解析】
【分析】
先根据等边三角形的性质求出△OBC的面积,然后由地基的面积是△OBC的6倍即可得到答案
【详解】
解:如图所示,正六边形ABCDEF,连接OB,OC,过点O作OP⊥BC于P,
由题意得:BC=4cm,
∵六边形ABCD是正六边形,
∴∠BOC=360°÷6=60°,
又∵OB=OC,
∴△OBC是等边三角形,
∴,,
∴,
∴,
∴,
故选D.
【点睛】
本题主要考查了正多边形和圆,等边三角形的性质与判定,勾股定理,熟知正多边形和圆的关系是解题的关键.
4、C
【解析】
【分析】
如图1,△ABC是等边三角形,则∠ABC=60°,根据同弧所对的圆周角相等∠ADC=∠ABC=60°,所以判断①正确;如图1,可证明△DBE∽△DAC,则,所以DB•DC=DE•DA,而DB与DC不一定相等,所以判断②错误;如图2,作AH⊥BD于点H,延长DB到点K,使BK=CD,连接AK,先证明△ABK≌△ACD,可证明S四边形ABDC=S△ADK,可以求得S△ADK=,所以判断③正确;如图3,连接OA、OG、OC、GC,由CF切⊙O于点C得CF⊥OC,而AF⊥CF,所以AF∥OC,由圆周角定理可得∠AOC=120°,则∠OAC=∠OCA=30°,于是∠CAG=∠OCA=30°,则∠COG=2∠CAG=60°,可证明△AOG和△COG都是等边三角形,则四边形OABC是菱形,因此OA∥CG,推导出S阴影=S扇形COG,在Rt△CFG中根据勾股定理求出CG的长为4,则⊙O的半径为4,可求得S阴影=S扇形COG==,所以判断④正确,所以①③④这3个结论正确.
【详解】
解:如图1,∵△ABC是等边三角形,
∴∠ABC=60°,
∵等边△ABC内接于⊙O,
∴∠ADC=∠ABC=60°,
故①正确;
∵∠BDE=∠ACB=60°,∠ADC=∠ABC=60°,
∴∠BDE=∠ADC,
又∠DBE=∠DAC,
∴△DBE∽△DAC,
∴,
∴DB•DC=DE•DA,
∵D是上任一点,
∴DB与DC不一定相等,
∴DB•DC与DB2也不一定相等,
∴DB2与DE•DA也不一定相等,
故②错误;
如图2,作AH⊥BD于点H,延长DB到点K,使BK=CD,连接AK,
∵∠ABK+∠ABD=180°,∠ACD+∠ABD=180°,
∴∠ABK=∠ACD,
∴AB=AC,
∴△ABK≌△ACD(SAS),
∴AK=AD,S△ABK=S△ACD,
∴DH=KH=DK,
∵∠AHD=90°,∠ADH=60°,
∴∠DAH=30°,
∵AD=2,
∴DH=AD=1,
∴DK=2DH=2,,
∴S△ADK=,
∴S四边形ABDC=S△ABD+S△ACD=S△ABD+S△ABK=S△ADK=,
故③正确;
如图3,连接OA、OG、OC、GC,则OA=OG=OC,
∵CF切⊙O于点C,
∴CF⊥OC,
∵AF⊥CF,
∴AF∥OC,
∵∠AOC=2∠ABC=120°,
∴∠OAC=∠OCA=×(180°﹣120°)=30°,
∴∠CAG=∠OCA=30°,
∴∠COG=2∠CAG=60°,
∴∠AOG=60°,
∴△AOG和△COG都是等边三角形,
∴OA=OC=AG=CG=OG,
∴四边形OABC是菱形,
∴OA∥CG,
∴S△CAG=S△COG,
∴S阴影=S扇形COG,
∵∠OCF=90°,∠OCG=60°,
∴∠FCG=30°,
∵∠F=90°,
∴FG=CG,
∵FG2+CF2=CG2,CF=,
∴(CG)2+()2=CG2,
∴CG=4,
∴OC=CG=4,
∴S阴影=S扇形COG==,
故④正确,
∴①③④这3个结论正确,
故选C.
【点睛】
本题主要考查了等边三角形的性质与判定,圆切线的性质,圆周角定理,全等三角形的性质与判定,菱形的性质与判定,勾股定理,含30度角的直角三角形的性质等等,解题的关键在于能够熟练掌握相关知识进行求解.
5、D
【解析】
【分析】
首先连接OA,OB,由PA,PB为⊙O的切线,根据切线的性质,即可得∠OAP=∠OBP=90°,又由圆周角定理,可求得∠AOB的度数,继而可求得答案.
【详解】
解:连接OA,OB,
∵PA,PB为⊙O的切线,
∴∠OAP=∠OBP=90°,
∵∠ACB=70°,
∴∠AOB=2∠P=140°,
∴∠P=360°-∠OAP-∠OBP-∠AOB=40°.
故选:D.
【点睛】
此题考查了切线的性质与圆周角定理,注意掌握辅助线的作法和数形结合思想的应用.
6、B
【解析】
【分析】
如图, 为正三角形ABC的外接圆,过点O作OD⊥AB于点D,连接OA, 再由等边三角形的性质,可得∠OAB=30°,,然后根据锐角三角函数,即可求解.
【详解】
解:如图, 为正三角形ABC的外接圆,过点O作OD⊥AB于点D,连接OA,
根据题意得:OA= ,∠OAB=30°,,
在中,
,
∴AB=3,即这个正三角形的边长是3.
故选:B
【点睛】
本题主要考查了锐角三角函数,三角形的外接圆,熟练掌握锐角三角函数,三角形的外接圆性质是解题的关键.
7、A
【解析】
【分析】
直接根据点与圆的位置关系进行解答即可.
【详解】
解:∵⊙O的半径为5cm,点P与圆心O的距离为4cm,5cm>4cm,
∴点P在圆内.
故选:A.
【点睛】
本题考查了点与圆的位置关系,当点到圆心的距离小于半径的长时,点在圆内;当点到圆心的距离等于半径的长时,点在圆上;当点到圆心的距离大于半径的长时,点在圆外.
8、B
【解析】
【分析】
连接OD,求出BC是⊙O的切线,根据切线长定理得出CD=BC,根据切线的性质求出∠ODM=90°,根据勾股定理求出MD,再根据勾股定理求出BC即可.
【详解】
解:连接OD,
∵MD切⊙O于D,
∴∠ODM=90°,
∵⊙O的半径为2,MA=AO,AB是⊙O的直径,
∴MO=2+2=4,MB=4+2=6,OD=2,
由勾股定理得:MD===2,
∵BC⊥AB,
∴BC切⊙O于B,
∵DC切⊙O于D,
∴CD=BC,
设CD=CB=x,
在Rt△MBC中,由勾股定理得:MC2=MB2+BC2,
即(2+x)2=62+x2,
解得:x=2,
即BC=2,
故选:B.
【点睛】
本题考查了切线的性质和判定,圆周角定理,勾股定理等知识点,能综合运用定理进行推理是解此题的关键.
9、A
【解析】
【分析】
直接根据直线与圆的位置关系即可得出结论.
【详解】
解:∵⊙O的半径为6,直线m上有一动点P,OP=4,
∴直线与⊙O相交.
故选:A.
【点睛】
本题考查的是直线与圆的位置关系,熟知⊙O的半径为r,圆心O到直线l的距离为d,当d=r时,直线l和⊙O相切是解答此题的关键.
10、C
【解析】
【分析】
根据若直线上一点到圆心的距离等于圆的半径,则圆心到直线的距离等于或小于圆的半径,此时直线和圆相交或相切.
【详解】
解:∵半径为5的圆,直线l上一点到圆心的距离是5,
∴圆心到直线的距离等于或小于5,
∴直线和圆的位置关系为相交或相切,
故选:C.
【点睛】
本题考查了直线和圆的位置关系,判断的依据是半径和直线到圆心的距离的大小关系:设⊙O的半径为r,圆心O到直线l的距离为d,①直线l和⊙O相交⇔d<r;②直线l和⊙O相切⇔d=r;③直线l和⊙O相离⇔d>r.
二、填空题
1、6
【解析】
【分析】
依题意,直角三角形性质,结合题意能够容纳的最大为内切圆,结合内切圆半径,利用等积法求解即可;
【详解】
设直角三角形中能容纳最大圆的半径为:;
依据直角三角形的性质:可得斜边长为:
依据直角三角形面积公式:,即为;
内切圆半径面积公式:,即为;
所以,可得:,所以直径为:;
故填:6;
【点睛】
本题主要考查直角三角形及其内切圆的性质,重点在理解题意和利用内切圆半径求解面积;
2、5
【解析】
【分析】
根据圆的确定方法做出过A,B,C三点的外接圆,从而得出答案.
【详解】
如图,分别作AB、BC的中垂线,两直线的交点为O,
以O为圆心、OA为半径作圆,则⊙O即为过A,B,C三点的外接圆,
由图可知,⊙O还经过点D、E、F、G、H这5个格点,
故答案为5.
【点睛】
此题考查了确定圆的方法,三角形的外接圆,解题的关键是根据题意确定三角形ABC外接圆的圆心.
3、30
【解析】
【分析】
连接OC,根据切线的性质定理得到∠OCD=90°,根据三角形内角和定理求出∠D.
【详解】
解:连接OC,
∵CD为⊙O的切线,
∴∠OCD=90°,
由圆周角定理得,∠COD=2∠A=60°,
∴∠D=90°-60°=30°,
故答案为:30.
【点睛】
本题考查的是切线的性质,圆周角定理,掌握圆的切线垂直于经过切点的半径是解题的关键.
4、3
【解析】
【分析】
由切线长定理和,可得为等边三角形,则.
【详解】
解:连接,如下图:
,分别为的切线,
,
为等腰三角形,
,
,
为等边三角形,
,
,
.
故答案为:3.
【点睛】
本题考查了等边三角形的判定和切线长定理,解题的关键是作出相应辅助线.
5、76
【解析】
【分析】
连接OA、OB,根据圆周角定理求得∠AOB,由切线的性质求出∠OAP=∠OBP=90°,再由四边形的内角和等于360°,即可得出答案
【详解】
解:连接OA、OB,,
∴∠AOB=104°
∵PA、PB是⊙O的两条切线,点A、B为切点,
∴∠OAP=∠OBP=90°
∵∠APB+∠OAP+∠AOB+∠OBP=360°
∴∠APB=180°-(∠OAP+∠AOB+∠OBP)=76°
故答案为:76
【点睛】
本题考查了切线的性质、四边形的内角和定理以及圆周角定理,利用切线性质和圆周角定理求出角的度数是解题的关键
三、解答题
1、 (1)见解析
(2)cm
【解析】
【分析】
(1)作∠ABC的平分线,交AC于点O,再以点O为圆心、OC为半径作圆;
(2)记⊙O与AB的切点为E,连接OE,则OC=OE,BC=BE,设OC=OE=r,则AO=AC-r,在Rt△AOE中,由AO2=AE2+OE2列出关于r的方程求解即可.
①设AC=3x,AB=5x,用勾股定理表示出BC的长,根据的周长为12cm,列方程求出x,从而可求出三边的长;
②设AC=3x,AB=5x,用勾股定理表示出BC的长,根据,列方程求出x,从而可求出三边的长;
(1)
解:如图,
(2)
解:如图,设与相切于点.连接OE,则OC=OE,BC=BE,设OC=OE=r,则AO=AC-r.
①∵,∴设AC=3x,AB=5x,
∴BC==4x,
∵的周长为12cm,
∴3x+4x+5x=12,
∴x=1,
∴AC=3,AB=5,
∵⊙O 与 AB 、 BC 所在直线相切
∴BE=BC=4,
∴AE=AB-BE=5-4=1,AO=3-r,
在Rt△AOE中,
∵AO2=AE2+OE2,
∴(3-r)2=12+r2,
∴r=;
②∵,∴设AC=3x,AB=5x,
∴BC==4x,
∵,
∴4x=12,
∴x=1,
∴AC=3,AB=5,
∵⊙O 与 AB 、 BC 所在直线相切
∴BE=BC=4,
∴AE=AB-BE=5-4=1,AO=3-r,
在Rt△AOE中,
∵AO2=AE2+OE2,
∴(3-r)2=12+r2,
∴r=;
即⊙O的半径为cm.
【点睛】
本题考查了作图—复杂作图,勾股定理,切线的性质,以及切线长定理,解题的关键是掌握角平分线的尺规作图和性质、切线的性质和切线长定理及勾股定理.
2、 (1)见解析
(2)
(3)①见解析;②
【解析】
【分析】
(1)根据正方形的性质以及动点的路程相等,证明,根据同角的余角相等,即可证明,即;
(2)当t=0时,点M与点B重合,当时,点随之停止,求得运动轨迹为圆,根据弧长公式进行计算即可;
(3)①根据(2)可得△CME的外接圆的圆心O是斜边CE的中点,继而判断点D、C、M、E在同一个圆()上;②当与AB相切时,与正方形的各边共有5个交点,如图5则有6个交点,所以“当与AB相切时”是临界情况.如图4,当与AB相切(切点为G),连接OG,并延长GO交CD于点H,在Rt△CHO中求得半径,进而勾股定理求得,即可求得当时,与正方形的各边共有6个交点.
(1)
四边形是正方形,
,
又的运动速度都是2cm/s,
即
(2)
∵.
∴点M在以CB为直径的圆上,如图1,当t=0时,点M与点B重合;
如图2,当t=3时,点M为正方形对角线的交点.点M的运动路径为圆,其路径长.
故答案为:
(3)
①如图3.由前面结论可知:
∴△CME的外接圆的圆心O是斜边CE的中点,
则
在Rt△CDE中,,O是CE的中点.
∴,
∴
∴点D、C、M、E在同一个圆()上,
即点D在△CME的外接圆上;.
②.
如图4,当与AB相切时,与正方形的各边共有5个交点,如图5则有6个交点,所以“当与AB相切时”是临界情况.
如图4,当与AB相切(切点为G),连接OG,并延长GO交CD于点H.
∵AB与相切,
∴,
又∵,
∴,
设的半径为R.由题意得:
在Rt△CHO中,,解得
∴
∴,即
∴如图5,当时,与正方形的各边共有6个交点.
【点睛】
本题考查了求弧长,切线的性质,直径所对的圆周角是直角,三角形的外心,正方形的性质,全等三角形的性质与判定,分类讨论是解题的关键.
3、 (1)相切,理由见解析
(2)
【解析】
【分析】
(1)连接OD,根据角平分线的性质与角的等量代换易得∠ODE=90°,而D是圆上的一点;故可得直线DE与⊙O相切;
(2)连接BD,根据勾股定理得到AD==2,根据圆周角定理得到∠ADB=90°,根据相似三角形的性质列方程得到AB=5,即可求解.
(1)
解:所在直线与相切.
理由:连接.
∵,
∴.
∵平分,
∴.
∴.
∴.
∴.
∵,
∴.
∴.
∴.
∵是半径,
∴所在直线与相切.
(2)
解:连接.
∵是的直径,
∴.
∴.
又∵,
∴.
∴.
∵,,,
∴.
∴.
∴的半径为.
【点睛】
本题考查的是直线与圆的位置关系,相似三角形的判定和性质及勾股定理,正确的作出辅助线是解题的关键.
4、 (1)见解析
(2)的半径长为.
【解析】
【分析】
(1)根据切线的性质,可得,由平行线的性质,等边对等角,等量代换即可得,进而得证;
(2)连接,根据直径所对的圆周角是直角,勾股定理求得,证明列出比例式,代入数值求解可得,进而求得半径
(1)
证明:如图,连接,
∵是的切线,
∴,
∵,
∴,
∴,
∵,
∴,
∴,即平分;
(2)
解:如图,连接,
在中,,,
由勾股定理得:,
∵是的直径,
∴,
∴,
∵,
∴,
∴,即,
解得:,
∴的半径长为.
【点睛】
本题考查了切线的性质,直径所对的圆周角是直角,相似三角形的性质与判定,勾股定理,掌握圆的相关知识以及相似三角形的是解题的关键.
5、 (1)见解析
(2)
【解析】
【分析】
(1)连接,利用角平分线的定义和等腰三角形的性质可证,从而,得到,根据切线的判定方法可证是的切线;
(2)证明,利用相似三角形的性质可求的半径.
(1)
证明:连接,
∵,
∴,
∴是直径,是的中点.
∵平分,
∴,
∵,
∴,
∴,
∴.
又∵,
∴,
∴,
又∵经过半径的外端,
∴是的切线.
(2)
解:∵,
∴,
在与中,
,,
∴.
∴,
在中,,,
∴.
设半径为,则,,
即,
∴.
∴的半径为.
【点睛】
本题考查了切线的判定,等腰三角形的性质,平行线的判定与性质,以及相似三角形的判定与性质,掌握切线的判定方法是解(1)的关键,掌握相似三角形的判定与性质是解(2)的关键.
冀教版九年级下册第29章 直线与圆的位置关系综合与测试精品精练: 这是一份冀教版九年级下册第29章 直线与圆的位置关系综合与测试精品精练,共33页。试卷主要包含了如图,一把宽为2cm的刻度尺,以半径为1的圆的内接正三角形等内容,欢迎下载使用。
初中数学第29章 直线与圆的位置关系综合与测试精品课后复习题: 这是一份初中数学第29章 直线与圆的位置关系综合与测试精品课后复习题,共36页。试卷主要包含了在平面直角坐标系中,以点等内容,欢迎下载使用。
初中数学冀教版九年级下册第29章 直线与圆的位置关系综合与测试精品课后测评: 这是一份初中数学冀教版九年级下册第29章 直线与圆的位置关系综合与测试精品课后测评,共32页。试卷主要包含了已知M等内容,欢迎下载使用。