冀教版九年级下册第29章 直线与圆的位置关系综合与测试优秀一课一练
展开九年级数学下册第二十九章直线与圆的位置关系专题攻克
考试时间:90分钟;命题人:数学教研组
考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)
一、单选题(10小题,每小题3分,共计30分)
1、如图所示,⊙O的半径为5,点O到直线l的距离为7,P是直线l上的一个动点,PQ与⊙O相切于点Q.则PQ的最小值为( )
A. B. C.2 D.2
2、如图,是的切线,B为切点,连接,与交于点C,D为上一动点(点D不与点C、点B重合),连接.若,则的度数为( )
A. B. C. D.
3、如图,在平面直角坐标系xOy中,点A(0,3),点B(2,1),点C(2,-3).则经画图操作可知:△ABC的外接圆的圆心坐标是( )
A.(-2,-1) B.(-1,0) C.(-1,-1) D.(0,-1)
4、如图是一个含有3个正方形的相框,其中∠BCD=∠DEF=90°,AB=2,CD=3,EF=5,将它镶嵌在一个圆形的金属框上,使A,G, H三点刚好在金属框上,则该金属框的半径是( )
A. B. C. D.
5、圆O的半径为5cm,点A到圆心O的距离OA=4cm,则点A与圆O的位置关系为( )
A.点A在圆上 B.点A在圆内 C.点A在圆外 D.无法确定
6、在平面直角坐标系中,以点(2,3)为圆心,3为半径的圆,一定( )
A.与x轴相切,与y轴相切 B.与x轴相切,与y轴相交
C.与x轴相交,与y轴相切 D.与x轴相交,与y轴相交
7、如图,,是的切线,,是切点,,是上的点,若,,则的度数为( )
A. B. C. D.
8、如图,若的半径为R,则它的外切正六边形的边长为( )
A. B. C. D.
9、下列说法正确的是( )
A.三点确定一个圆 B.任何三角形有且只有一个内切圆
C.相等的圆心角所对的弧相等 D.正多边形一定是中心对称图形
10、如图,AB是⊙O的直径,点D在AB的延长线上,DC切⊙O于点C,若∠A=20°,则∠D等于( )
A.20° B.30° C.50° D.40°
第Ⅱ卷(非选择题 70分)
二、填空题(5小题,每小题4分,共计20分)
1、在Rt△ABC中,∠ACB=90°,BC=3,AC=4,直线l经过△ABC的内心O,过点C作CD⊥l,垂足为D,连接AD,则AD的最小值是=____.
2、若的半径为5cm,点到圆心的距离为4cm,那么点与的位置关系是__.
3、已知的半径为5,点A到点O的距离为7,则点A在圆______.(填“内”或“上”或“外”)
4、如图,直线AB与x轴、y轴分别相交于A、B两点,点A(-3,0),点 B(0,),圆心P的坐标为(1,0),圆P与y轴相切与点O.若将圆P沿x轴向左移动,当圆P与该直线相交时,令圆心P的横坐标为m,则m的取值范围是________.
5、如图,⊙O的半径为5cm,正六边形ABCDEF内接于⊙O,则图中阴影部分的面积为 ___.
三、解答题(5小题,每小题10分,共计50分)
1、如图,中,.
(1)用直尺和圆规作,使圆心在边上,且与、所在直线相切(不写作法,保留作图痕迹);
(2)在(1)的条件下,再从以下两个条件①“,的周长为12cm;②,”中选择一个作为条件,并求的半径.
2、如图,点在轴正半轴上,,点是第一象限内的一点,以为直径的圆交轴于,两点,,两点的横坐标是方程的两个根,,连接.
(1)如图(1),连接.
①求的正切值;
②求点的坐标.
(2)如图(2),若点是的中点,作于点,连接,,,求证:.
3、苏科版教材八年级下册第94页第19题,小明在学过圆之后,对该题进行重新探究,请你和他一起完成问题探究.
【问题探究】小明把原问题转化为动点问题,如图1,在边长为6cm的正方形ABCD中,点E从点A出发,沿边AD向点D运动,同时,点F从点B出发,沿边BA向点A运动,它们的运动速度都是2cm/s,当点E运动到点D时,两点同时停止运动,连接CF、BE交于点M,设点E, F运动时问为t秒.
(1)【问题提出】如图1,点E,F分别在方形ABCD中的边AD、AB上,且,连接BE、CF交于点M,求证:.请你先帮小明加以证明.
(2)如图1,在点E、F的运动过程中,点M也随之运动,请直接写出点M的运动路径长 cm.
(3)如图2,连接CE,在点E、F的运动过程中.
①试说明点D在△CME的外接圆O上;
②若①中的O与正方形的各边共有6个交点,请直接写出t的取值范围.
4、如图,在中,,平分,与交于点,,垂足为,与交于点,经过,,三点的与交于点.
(1)求证是的切线;
(2)若,,求的半径.
5、如图,PA,PB是圆的切线,A,B为切点.
(1)求作:这个圆的圆心O(用尺规作图,保留作图痕迹,不写作法和证明);
(2)在(1)的条件下,延长AO交射线PB于C点,若AC=4,PA=3,请补全图形,并求⊙O的半径.
-参考答案-
一、单选题
1、C
【解析】
【分析】
由切线的性质可知OQ⊥PQ,在Rt△OPQ中,OQ=5,则可知当OP最小时,PQ有最小值,当OP⊥l时,OP最小,利用勾股定理可求得PQ的最小值.
【详解】
∵PQ与⊙O相切于点Q,
∴OQ⊥PQ,
∴PQ2=OP2-OQ2=OP2-52=OP2-25,
∴当OP最小时,PQ有最小值,
∵点O到直线l的距离为7,
∴OP的最小值为7,
∴PQ的最小值=,
故选:C.
【点睛】
本题主要考查切线的性质,掌握过切点的半径与切线垂直是解题的关键.
2、B
【解析】
【分析】
如图:连接OB,由切线的性质可得∠OBA=90°,再根据直角三角形两锐角互余求得∠COB,然后再根据圆周角定理解答即可.
【详解】
解:如图:连接OB,
∵是的切线,B为切点
∴∠OBA=90°
∵
∴∠COB=90°-42°=48°
∴=∠COB=24°.
故选B.
【点睛】
本题主要考查了切线的性质、圆周角定理等知识点,掌握圆周角等于对应圆心角的一半成为解答本题的关键.
3、A
【解析】
【分析】
首先由△ABC的外心即是三角形三边垂直平分线的交点,所以在平面直角坐标系中作AB与BC的垂线,两垂线的交点即为△ABC的外心.
【详解】
解:∵△ABC的外心即是三角形三边垂直平分线的交点,
如图所示:EF与MN的交点O′即为所求的△ABC的外心,
∴△ABC的外心坐标是(﹣2,﹣1).
故选:A
【点睛】
此题考查了三角形外心的知识.注意三角形的外心即是三角形三边垂直平分线的交点.解此题的关键是数形结合思想的应用.
4、A
【解析】
【分析】
如图,记过A,G, H三点的圆为则是,的垂直平分线的交点, 记的交点为 的交点为 延长交于为的垂直平分线,结合正方形的性质可得:再设利用勾股定理建立方程,再解方程即可得到答案.
【详解】
解:如图,记过A,G, H三点的圆为则是,的垂直平分线的交点,
记的交点为 的交点为 延长交于为的垂直平分线,结合正方形的性质可得:
四边形为正方形,则
设 而AB=2,CD=3,EF=5,结合正方形的性质可得:
而
又 而
解得:
故选A
【点睛】
本题考查的是正方形的性质,三角形外接圆圆心的确定,圆的基本性质,勾股定理的应用,二次根式的化简,确定过A,G, H三点的圆的圆心是解本题的关键.
5、B
【解析】
【分析】
根据点与圆的位置关系的判定方法进行判断.
【详解】
解:∵⊙O的半径为5cm,点A到圆心O的距离为4cm,
即点A到圆心O的距离小于圆的半径,
∴点A在⊙O内.
故选:B.
【点睛】
本题考查了点与圆的位置关系:设⊙O的半径为r,点P到圆心的距离OP=d,则有点P在圆外⇔d>r;点P在圆上⇔d=r;点P在圆内⇔d<r.
6、B
【解析】
【分析】
由已知点(2,3)可求该点到x轴,y轴的距离,再与半径比较,确定圆与坐标轴的位置关系.设d为直线与圆的距离,r为圆的半径,则有若d
【详解】
解:∵点(2,3)到x轴的距离是3,等于半径,
到y轴的距离是2,小于半径,
∴圆与y轴相交,与x轴相切.
故选B.
【点睛】
本题考查的是直线与圆的位置关系,解决此类问题可通过比较圆心到直线距离d与圆半径大小关系完成判定.
7、A
【解析】
【分析】
如图,连接先求解 再利用圆周角定理可得,从而可得答案.
【详解】
解:如图,连接
,是的切线,
故选A
【点睛】
本题考查的是三角形的内角和定理,四边形的内角和定理,圆周角定理的应用,圆的切线的性质的应用,理解是解本题的关键.
8、B
【解析】
【分析】
如图连结OA,OB,OG,根据六边形ABCDEF为圆外切正六边形,得出∠AOB=60°△AOB为等边三角形,根据点G为切点,可得OG⊥AB,可得OG平分∠AOB,得出∠AOC=,根据锐角三角函数求解即可.
【详解】
解:如图连结OA,OB,OG,
∵六边形ABCDEF为圆外切正六边形,
∴∠AOB=360°÷6=60°,△AOB为等边三角形,
∵点G为切点,
∴OG⊥AB,
∴OG平分∠AOB,
∴∠AOC=,
∴cos30°=,
∴.
故选择B.
【点睛】
本题考查圆与外切正六边形性质,等边三角形性质,锐角三角形函数,掌握圆与外切正六边形性质,等边三角形性质,锐角三角形函数是解题关键.
9、B
【解析】
【分析】
根据确定圆的条件、三角形的内切圆、圆心角化和弧的关系、中心对称图形的概念判断.
【详解】
解:A、不在同一直线上的三点确定一个圆,故错误;
B、任何三角形有且只有一个内切圆,正确;
C、在同圆或等圆中,相等的圆心角所对的弧相等,故错误;
D、边数是偶数的正多边形一定是中心对称图形,故错误;
故选:B.
【点睛】
本题考查的是命题的真假判断,正确的命题叫真命题,错误的命题叫做假命题.判断命题的真假关键是要熟悉课本中的性质定理.
10、C
【解析】
【分析】
连接CO利用切线的性质定理得出∠OCD=90°,进而求出∠DOC=40°即可得出答案.
【详解】
解:连接OC,
∵DC切⊙O于点C,
∴∠OCD=90°,
∵∠A=20°,
∴∠OCA=20°,
∴∠DOC=40°,
∴∠D=90°-40°=50°.
故选:C.
【点睛】
本题主要考查了切线的性质以及三角形外角性质等知识,根据已知得出∠OCD=90°是解题关键.
二、填空题
1、
【解析】
【分析】
先利用切线长定理求得OC=,再判断出当点D运动到线段QA上时,AD取得最小值,
然后利用勾股定理求解即可.
【详解】
解:⊙O 与Rt△ABC三边的切点分别为E、F、G,连接OE、OF、OG、OC,
∵⊙O是Rt△ABC内切圆,∠ACB=90°,BC=3,AC=4,
∴CE=CF,BE=BG,AF=AG,则四边形OECF是正方形,AB==5,
设正方形OECF的边长为x,则BE=BG=3-x,AF=AG=4-x,
依题意得:3-x+4-x=5,
解得:x=1,
∴OC=,
∵CD⊥l,即∠CDO=90°,
∴点D在以OC为直径的⊙Q上,
连接QA,过点Q作QP⊥AC于点P,
当点D运动到线段QA上时,AD取得最小值,
∴CP=QP=,AP=AC-CP=,⊙Q的半径为QD=,
∴QA=,
∴AD的最小值为AQ-QD=,
故答案为:.
【点睛】
本题考查了内心的性质,切线长定理,圆周角定理,勾股定理,解答本题的关键是明确题意,找出所求问题需要的条件.
2、点在圆内
【解析】
【分析】
比较点到圆心的距离d与半径r的大小关系;当时,点在圆外;当时,点在圆上;当时,点在圆内;求值后进行判断即可.
【详解】
解:的半径为,点A到圆心的距离为
点A与的位置关系是:点A在圆内
故答案为:点A在圆内.
【点睛】
本题考查了点与圆的位置关系.解题的关键在于比较点到圆心的距离d与半径r的大小关系.
3、外
【解析】
【分析】
直接根据点与圆的位置关系的判定方法进行判断.
【详解】
解:∵⊙O的半径是5,点A到圆心O的距离是7,
即点A到圆心O的距离大于圆的半径,
∴点A在⊙O外.
故答案为:外.
【点睛】
本题考查了点与圆的位置关系:设⊙O的半径为r,点P到圆心的距离OP=d,则有点P在圆外⇔d>r;点P在圆上⇔d=r;点P在圆内⇔d<r.
4、
【解析】
【分析】
当⊙P在直线AB下方与直线AB相切时,可求得此时m的值;当⊙P在直线AB上方与直线AB相切时,可求得此时m的值,从而可确定符合题意的m的取值范围.
【详解】
∵圆心P的坐标为(1,0),⊙P与y轴相切与点O
∴⊙P的半径为1
∵点A(-3,0),点 B(0,)
∴OA=3,
∴
∴∠BAO=30°
当⊙P在直线AB下方与直线AB相切时,如图,设切点为C,连接PC
则PC⊥AB,且PC=1
∴AP=2PC=2
∴OP=OA−AP=3−2=1
∴P点坐标为(−1,0)
即m=−1
当⊙P在直线AB上方与直线AB相切时,如图,设切点为C,连接PD
则PD⊥AB,且PD=1
∴AP=2PD=2
∴OP=OA+AP=3+2=5
∴P点坐标为(−5,0)
即m=−5
∴⊙P沿x轴向左移动,当⊙P与直线AB相交时,m的取值范围为
故答案为:
【点睛】
本题考查了直线与圆相交的位置关系,切线的性质定理等知识,这里通过讨论直线与圆相切的情况来解决直线与圆相交的情况,体现了转化思想,注意相切有两种情况,不要出现遗漏的情况.
5、
【解析】
【分析】
根据图形分析可得求阴影部分面积实为求扇形面积,将原图阴影部分面积转化为扇形面积求解即可.
【详解】
如图,连接BO,OC,OA,
由题意得:△BOC,△AOB都是等边三角形,
∴∠AOB=∠OBC=60°,
∴OA∥BC,
∴,
.
故答案为:.
【点睛】
本题考查正多边形与圆、扇形的面积公式、平行线的性质等知识,解题的关键是得出.
三、解答题
1、 (1)见解析
(2)cm
【解析】
【分析】
(1)作∠ABC的平分线,交AC于点O,再以点O为圆心、OC为半径作圆;
(2)记⊙O与AB的切点为E,连接OE,则OC=OE,BC=BE,设OC=OE=r,则AO=AC-r,在Rt△AOE中,由AO2=AE2+OE2列出关于r的方程求解即可.
①设AC=3x,AB=5x,用勾股定理表示出BC的长,根据的周长为12cm,列方程求出x,从而可求出三边的长;
②设AC=3x,AB=5x,用勾股定理表示出BC的长,根据,列方程求出x,从而可求出三边的长;
(1)
解:如图,
(2)
解:如图,设与相切于点.连接OE,则OC=OE,BC=BE,设OC=OE=r,则AO=AC-r.
①∵,∴设AC=3x,AB=5x,
∴BC==4x,
∵的周长为12cm,
∴3x+4x+5x=12,
∴x=1,
∴AC=3,AB=5,
∵⊙O 与 AB 、 BC 所在直线相切
∴BE=BC=4,
∴AE=AB-BE=5-4=1,AO=3-r,
在Rt△AOE中,
∵AO2=AE2+OE2,
∴(3-r)2=12+r2,
∴r=;
②∵,∴设AC=3x,AB=5x,
∴BC==4x,
∵,
∴4x=12,
∴x=1,
∴AC=3,AB=5,
∵⊙O 与 AB 、 BC 所在直线相切
∴BE=BC=4,
∴AE=AB-BE=5-4=1,AO=3-r,
在Rt△AOE中,
∵AO2=AE2+OE2,
∴(3-r)2=12+r2,
∴r=;
即⊙O的半径为cm.
【点睛】
本题考查了作图—复杂作图,勾股定理,切线的性质,以及切线长定理,解题的关键是掌握角平分线的尺规作图和性质、切线的性质和切线长定理及勾股定理.
2、 (1)①,②(4,3)
(2)见解析
【解析】
【分析】
(1)①过点P作PH⊥DC于H,作AF⊥PH于F,连接PD、AD,利用因式分解法解出一元二次方程,求出OD、OC,根据垂径定理求出DH,根据勾股定理计算求出半径,根据圆周角定理得到∠ADB=90°,根据正切的定义计算即可;②过点B作BE⊥x轴于点E,作AG⊥BE于G,根据平行线分线段成比例定理定理分别求出OE、BE,得到点B的坐标;
(2)过点E作EH⊥x轴于H,证明△EHD≌△EFB,得到EH=EF,DH=BF,再证明Rt△EHC≌Rt△EFC,得到CH=CF,结合图形计算,证明结论.
(1)
解:①以AB为直径的圆的圆心为P,
过点P作PH⊥DC于H,作AF⊥PH于F,连接PD、AD,
则DH=HC=DC,四边形AOHF为矩形,
∴AF=OH,FH=OA=1,
解方程x2﹣4x+3=0,得x1=1,x2=3,
∵OC>OD,
∴OD=1,OC=3,
∴DC=2,
∴DH=1,
∴AF=OH=2,
设圆的半径为r,则PH2=,
∴PF=PH﹣FH,
在Rt△APF中,AP2=AF2+PF2,即r2=22+(PH﹣1)2,
解得:r=,PH=2,PF=PH﹣FH=1,
∵∠AOD=90°,OA=OD=1,
∴AD=,
∵AB为直径,
∴∠ADB=90°,
∴BD===3,
∴tan∠ABD===;
②过点B作BE⊥x轴于点E,交圆于点G,连接AG,
∴∠BEO=90°,
∵AB为直径,
∴∠AGB=90°,
∵∠AOE=90°,
∴四边形AOEG是矩形,
∴OE=AG,OA=EG=1,
∵AF=2,
∵PH⊥DC,
∴PH⊥AG,
∴AF=FG=2,
∴AG=OE=4,BG=2PF=2,
∴BE=3,
∴点B的坐标为(4,3);
(2)
证明:过点E作EH⊥x轴于H,
∵点E是的中点,
∴=,
∴ED=EB,
∵四边形EDCB为圆P的内接四边形,
∴∠EDH=∠EBF,
在△EHD和△EFB中,
,
∴△EHD≌△EFB(AAS),
∴EH=EF,DH=BF,
在Rt△EHC和Rt△EFC中,
,
∴Rt△EHC≌Rt△EFC(HL),
∴CH=CF,
∴2CF=CH+CF=CD+DH+BC﹣BF=BC+CD.
【点睛】
本题考查的是圆周角定理、全等三角形的判定和性质、垂径定理、勾股定理的应用,正确作出辅助线、求出圆的半径是解题的关键.
3、 (1)见解析
(2)
(3)①见解析;②
【解析】
【分析】
(1)根据正方形的性质以及动点的路程相等,证明,根据同角的余角相等,即可证明,即;
(2)当t=0时,点M与点B重合,当时,点随之停止,求得运动轨迹为圆,根据弧长公式进行计算即可;
(3)①根据(2)可得△CME的外接圆的圆心O是斜边CE的中点,继而判断点D、C、M、E在同一个圆()上;②当与AB相切时,与正方形的各边共有5个交点,如图5则有6个交点,所以“当与AB相切时”是临界情况.如图4,当与AB相切(切点为G),连接OG,并延长GO交CD于点H,在Rt△CHO中求得半径,进而勾股定理求得,即可求得当时,与正方形的各边共有6个交点.
(1)
四边形是正方形,
,
又的运动速度都是2cm/s,
即
(2)
∵.
∴点M在以CB为直径的圆上,如图1,当t=0时,点M与点B重合;
如图2,当t=3时,点M为正方形对角线的交点.点M的运动路径为圆,其路径长.
故答案为:
(3)
①如图3.由前面结论可知:
∴△CME的外接圆的圆心O是斜边CE的中点,
则
在Rt△CDE中,,O是CE的中点.
∴,
∴
∴点D、C、M、E在同一个圆()上,
即点D在△CME的外接圆上;.
②.
如图4,当与AB相切时,与正方形的各边共有5个交点,如图5则有6个交点,所以“当与AB相切时”是临界情况.
如图4,当与AB相切(切点为G),连接OG,并延长GO交CD于点H.
∵AB与相切,
∴,
又∵,
∴,
设的半径为R.由题意得:
在Rt△CHO中,,解得
∴
∴,即
∴如图5,当时,与正方形的各边共有6个交点.
【点睛】
本题考查了求弧长,切线的性质,直径所对的圆周角是直角,三角形的外心,正方形的性质,全等三角形的性质与判定,分类讨论是解题的关键.
4、 (1)见解析
(2)
【解析】
【分析】
(1)连接,利用角平分线的定义和等腰三角形的性质可证,从而,得到,根据切线的判定方法可证是的切线;
(2)证明,利用相似三角形的性质可求的半径.
(1)
证明:连接,
∵,
∴,
∴是直径,是的中点.
∵平分,
∴,
∵,
∴,
∴,
∴.
又∵,
∴,
∴,
又∵经过半径的外端,
∴是的切线.
(2)
解:∵,
∴,
在与中,
,,
∴.
∴,
在中,,,
∴.
设半径为,则,,
即,
∴.
∴的半径为.
【点睛】
本题考查了切线的判定,等腰三角形的性质,平行线的判定与性质,以及相似三角形的判定与性质,掌握切线的判定方法是解(1)的关键,掌握相似三角形的判定与性质是解(2)的关键.
5、 (1)见解析;
(2)见解析,的半径为
【解析】
【分析】
(1)过点B作BP的垂线,作∠APB的平分线,二线的交点就是圆心;
(2)根据切线的性质,利用勾股定理,建立一元一次方程求解即可.
(1)
如图所示,点O即为所求
(2)
如图,∵PA是圆的切线,AO是半径,PB是圆的切线,
∴∠CAP=90°,PA=PB=3,∠CBO=90°,
∵AC=4,
∴PC==5,BC=5-3=2,
设圆的半径为x,则OC=4-x,
∴,
解得x=,
故圆的半径为.
【点睛】
本题考查了垂线的画法,角的平分线的画法,切线的性质,切线长定理,勾股定理,一元一次方程的解法,熟练掌握切线的性质,切线长定理和勾股定理是解题的关键.
初中数学冀教版九年级下册第29章 直线与圆的位置关系综合与测试精品一课一练: 这是一份初中数学冀教版九年级下册第29章 直线与圆的位置关系综合与测试精品一课一练,共31页。
初中数学冀教版九年级下册第29章 直线与圆的位置关系综合与测试精品同步练习题: 这是一份初中数学冀教版九年级下册第29章 直线与圆的位置关系综合与测试精品同步练习题,共32页。
初中数学冀教版九年级下册第29章 直线与圆的位置关系综合与测试优秀课时作业: 这是一份初中数学冀教版九年级下册第29章 直线与圆的位置关系综合与测试优秀课时作业,共32页。试卷主要包含了如图,PA等内容,欢迎下载使用。