|试卷下载
搜索
    上传资料 赚现金
    2021-2022学年度强化训练冀教版九年级数学下册第二十九章直线与圆的位置关系专项测试练习题(精选含解析)
    立即下载
    加入资料篮
    2021-2022学年度强化训练冀教版九年级数学下册第二十九章直线与圆的位置关系专项测试练习题(精选含解析)01
    2021-2022学年度强化训练冀教版九年级数学下册第二十九章直线与圆的位置关系专项测试练习题(精选含解析)02
    2021-2022学年度强化训练冀教版九年级数学下册第二十九章直线与圆的位置关系专项测试练习题(精选含解析)03
    还剩28页未读, 继续阅读
    下载需要20学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    初中数学冀教版九年级下册第29章 直线与圆的位置关系综合与测试精品一课一练

    展开
    这是一份初中数学冀教版九年级下册第29章 直线与圆的位置关系综合与测试精品一课一练,共31页。

    九年级数学下册第二十九章直线与圆的位置关系专项测试

     考试时间:90分钟;命题人:数学教研组

    考生注意:

    1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟

    2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上

    3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。

    I卷(选择题  30分)

    一、单选题(10小题,每小题3分,共计30分)

    1、下列说法正确的是(      

    A.三点确定一个圆 B.任何三角形有且只有一个内切圆

    C.相等的圆心角所对的弧相等 D.正多边形一定是中心对称图形

    2、如图,PA的切线,切点为APO的延长线交于点B,若,则的度数为(       ).

    A.20° B.25° C.30° D.40°

    3、已知点A是⊙O外一点,且⊙O的半径为3,则OA可能为(      

    A.1 B.2 C.3 D.4

    4、如图,的切线,B为切点,连接,与交于点CD上一动点(点D不与点C、点B重合),连接.若,则的度数为(      

    A. B. C. D.

    5、直角三角形的外接圆半径为3,内切圆半径为1,则该直角三角形的周长是(      

    A.12 B.14 C.16 D.18

    6、如图,在中,以AB为直径的圆交AC于点D的切线DEBC于点E,若于点E,则的半径为(       ).

    A.4 B. C.2 D.

    7、如图,正方形ABCD的边长为8,若经过CD两点的⊙O与直线AB相切,则⊙O的半径为(      

    A.4.8 B.5 C.4 D.4

    8、如图,AB是⊙O的直径,点DAB的延长线上,DC切⊙O于点C,若∠A=20°,则∠D等于(      

    A.20° B.30° C.50° D.40°

    9、如图,的两边分别相切,其中OA边与⊙C相切于点P.若,则OC的长为(      

    A.8 B. C. D.

    10、如图,已知AB的直径,CAB延长线上一点,CE的切线,切点为D,过点A于点E,交于点F,连接ODADBF.则下列结论不一定正确的是(         

    A. B.AD平分 C. D.

    第Ⅱ卷(非选择题  70分)

    二、填空题(5小题,每小题4分,共计20分)

    1、若的半径为5cm,点到圆心的距离为4cm,那么点的位置关系是__.

    2、如图,分别与相切于AB两点,若,则的度数为________.

    3、如图,正方形ABCD的边长为4,点ECD边上一点,连接AE,过点BBGAE于点G,连接CG并延长交AD于点F,则AF的最大值是_______.

    4、如图,PAPB的切线,切点分别为AB.若,则AB的长为______.

    5、如图,AB是⊙O的切线,A为切点,连结OAOB.若OA=5,AB=6,则tan∠AOB=______.

    三、解答题(5小题,每小题10分,共计50分)

    1、如图,已知的直径,点上,点外.

    (1)动手操作:作的角平分线,与圆交于点(要求:尺规作图,不写作法,保留作图痕迹)

    (2)综合运用,在你所作的图中.若,求证:的切线.

    2、如图,在中,,⊙O的外接圆,过点C,交⊙O于点D,连接ADBC于点E,延长DC至点F,使,连接AF

    (1)求证:

    (2)求证:AF是⊙O的切线.

    3、如图,四边形ACBD内接于⊙OAB是⊙O的直径,CD平分∠ACBAB于点E,点PAB延长线上,

    (1)求证:PC是⊙O的切线;

    (2)求证:

    (3)若,△ACD的面积为12,求PB的长.

    4、如图,的切线,点在上,相交于的直径,连接,若

    (1)求证:平分

    (2)当时,求的半径长.

    5、【提出问题】如图①,已知直线l与⊙O相离,在⊙O上找一点M,使点M到直线l的距离最短.

    (1)小明给出下列解答,请你补全小明的解答.

    小明的解答

    过点OONl,垂足为NON与⊙O的交点M即为所求,此时线段MN最短.

    理由:不妨在⊙O上另外任取一点P,过点PPQl,垂足为Q,连接OPOQ

    OP+PQOQOQON

         

    ONOM+MN

    OP+PQOM+MN

               

                  

    (2)【操作实践】如图②,已知直线l和直线外一点A,线段MN的长度为1.请用直尺和圆规作出满足条件的某一个⊙O,使⊙O经过点A,且⊙O上的点到直线l的距离的最小值为1.(不写作法,保留作图痕迹并用水笔加黑描粗)

    (3)【应用尝试】如图③,在RtABC中,∠C=90,∠B=30AB=8,⊙O经过点A,且⊙O上的点到直线BC的距离的最小值为2,距离最小值为2时所对应的⊙O上的点记为点P,若点P在△ABC的内部(不包括边界),则⊙O的半径r的取值范围是    

     

    -参考答案-

    一、单选题

    1、B

    【解析】

    【分析】

    根据确定圆的条件、三角形的内切圆、圆心角化和弧的关系、中心对称图形的概念判断.

    【详解】

    解:A、不在同一直线上的三点确定一个圆,故错误;

    B、任何三角形有且只有一个内切圆,正确;

    C、在同圆或等圆中,相等的圆心角所对的弧相等,故错误;

    D、边数是偶数的正多边形一定是中心对称图形,故错误;

    故选:B.

    【点睛】

    本题考查的是命题的真假判断,正确的命题叫真命题,错误的命题叫做假命题.判断命题的真假关键是要熟悉课本中的性质定理.

    2、B

    【解析】

    【分析】

    连接OA,如图,根据切线的性质得∠PAO=90°,再利用互余计算出∠AOP=50°,然后根据等腰三角形的性质和三角形外角性质计算∠B的度数.

    【详解】

    解:连接OA,如图,

    PA是⊙O的切线,

    OAAP

    ∴∠PAO=90°,

    ∵∠P=40°,

    ∴∠AOP=50°,

    OA=OB

    ∴∠B=∠OAB

    ∵∠AOP=∠B+∠OAB

    ∴∠B=∠AOP=×50°=25°.

    故选:B

    【点睛】

    本题考查了切线的性质:圆的切线垂直于经过切点的半径.若出现圆的切线,必连过切点的半径,构造定理图,得出垂直关系.

    3、D

    【解析】

    【分析】

    根据点到圆心的距离和圆的半径之间的数量关系,即可判断点和圆的位置关系.点到圆心的距离小于圆的半径,则点在圆内;点到圆心的距离等于圆的半径,则点在圆上;点到圆心的距离大于圆的半径,则点在圆外.

    【详解】

    解:∵点A为⊙O外的一点,且⊙O的半径为3,

    ∴线段OA的长度>3.

    故选:D.

    【点睛】

    此题考查了点和圆的位置关系与数量之间的联系:点到圆心的距离大于圆的半径,则点在圆外.

    4、B

    【解析】

    【分析】

    如图:连接OB,由切线的性质可得∠OBA=90°,再根据直角三角形两锐角互余求得∠COB,然后再根据圆周角定理解答即可.

    【详解】

    解:如图:连接OB

    的切线,B为切点

    ∴∠OBA=90°

    ∴∠COB=90°-42°=48°

    =COB=24°.

    故选B.

    【点睛】

    本题主要考查了切线的性质、圆周角定理等知识点,掌握圆周角等于对应圆心角的一半成为解答本题的关键.

    5、B

    【解析】

    【分析】

    IABE,切BCF,切ACD,连接IEIFID,得出正方形CDIF推出CD=CF=1,根据切线长定理得出AD=AE,BE=BF,CF=CD,求出AD+BF=AE+BE=AB=6,即可求出答案.

    【详解】

    解:如图,⊙IABE,切BCF,切ACD,连接IEIFID

    则∠CDI=∠C=∠CFI=90°,ID=IF=1,

    ∴四边形CDIF是正方形,

    CD=CF=1,

    由切线长定理得:AD=AE,BE=BF,CF=CD

    ∵直角三角形的外接圆半径为3,内切圆半径为1,

    AB=6=AE+BE=BF+AD

    即△ABC的周长是AC+BC+AB=AD+CD+CF+BF+AB=6+1+1+6=14,

    故选:B.

    【点睛】

    本题考查了直角三角形的外接圆与内切圆,正方形的性质和判定,切线的性质,切线长定理等知识点的综合运用.

    6、C

    【解析】

    【分析】

    连接ODBD,利用三角形外角的性质得到∠BOD=60°,证得△BOD是等边三角形,再利用切线的性质以及含30度角的直角三角形的性质求得BD=2BE=2,即可求解.

    【详解】

    解:连接ODBD

    ∵∠CAB=30°,OD=OA

    ∴∠CAB=∠ODA=30°,

    ∴∠BOD=∠CAB+∠ODA=60°,

    OD=OB

    ∴△BOD是等边三角形,

    DE是⊙O的切线,

    ∴∠ODE=90°,

    ∴∠BDE=30°,

    DEBC于点EBE=1,

    BD=2BE=2,

    OB=BD=2,

    即⊙O的半径为2,

    故选:C.

    【点睛】

    本题考查了切线的性质,含30度角的直角三角形的性质,等边三角形的判定和性质,正确作出辅助线,灵活应用定理是解决问题的关键.

    7、B

    【解析】

    【分析】

    连接EO,延长EOCDF,连接DO,设半径为x.构建方程即可解决问题.

    【详解】

    解:设⊙OAB相切于点E.连接EO,延长EOCDF,连接DO

    再设⊙O的半径为x

    AB切⊙OE

    EFAB

    ABCD

    EFCD

    ∴∠OFD=90°,

    RtDOF中,∵∠OFD=90°,OF2+DF2=OD2

    ∴(8-x2+42= x2

    x=5,

    ∴⊙O的半径为5.

    故选:B.

    【点睛】

    本题考查了切线的性质、正方形的性质、垂径定理、勾股定理等知识,解题的关键是灵活运用这些知识解决问题,学会添加常用辅助线,构造直角三角形解决问题.

    8、C

    【解析】

    【分析】

    连接CO利用切线的性质定理得出∠OCD=90°,进而求出∠DOC=40°即可得出答案.

    【详解】

    解:连接OC

    DC切⊙O于点C

    ∴∠OCD=90°,

    ∵∠A=20°,

    ∴∠OCA=20°,

    ∴∠DOC=40°,

    ∴∠D=90°-40°=50°.

    故选:C.

    【点睛】

    本题主要考查了切线的性质以及三角形外角性质等知识,根据已知得出∠OCD=90°是解题关键.

    9、C

    【解析】

    【分析】

    如图所示,连接CP,由切线的性质和切线长定理得到∠CPO=90°,∠COP=45°,由此推出CP=OP=4,再根据勾股定理求解即可.

    【详解】

    解:如图所示,连接CP

    OAOB都是圆C的切线,∠AOB=90°,P为切点,

    ∴∠CPO=90°,∠COP=45°,

    ∴∠PCO=∠COP=45°,

    CP=OP=4,

    故选C.

    【点睛】

    本题主要考查了切线的性质,切线长定理,等腰直角三角形的性质与判定,勾股定理,熟知切线长定理是解题的关键.

    10、D

    【解析】

    【分析】

    根据直径所对的圆周角是直角,切线的性质即可判断A选项;根据,进而即可判断B选项;设交于点,证明四边形是矩形,由垂径定理可得,进而可得进而判断C选项;无法判断D选项.

    【详解】

    解:∵AB的直径,

    CE的切线,切点为D

    ,故A选项正确,

    AD平分,故B选项正确,

    交于点,如图,

    ∴四边形是矩形

    ,故C选项正确

    ,则

    由于点不一定是的中点,故D选项不正确;

    故选D

    【点睛】

    本题考查了直径所对的圆周角是直角,垂径定理,切线的性质,矩形的判定,掌握圆的相关知识是解题的关键.

    二、填空题

    1、点在圆内

    【解析】

    【分析】

    比较点到圆心的距离d与半径r的大小关系;当时,点在圆外;当时,点在圆上;当时,点在圆内;求值后进行判断即可.

    【详解】

    解:的半径为,点A到圆心的距离为

    A的位置关系是:点A在圆内

    故答案为:点A在圆内.

    【点睛】

    本题考查了点与圆的位置关系.解题的关键在于比较点到圆心的距离d与半径r的大小关系.

    2、

    【解析】

    【分析】

    根据已知条件可得出,再利用圆周角定理得出即可.

    【详解】

    解:分别与相切于两点,

    故答案为:

    【点睛】

    本题考查的知识点是切线的性质以及圆周角定理,掌握以上知识点是解此题的关键.

    3、1

    【解析】

    【分析】

    AB为直径作圆,当CF与圆相切时,AF最大.根据切线长定理转化线段AFBCCF,在RtDFC利用勾股定理求解.

    【详解】

    解:以AB为直径作圆,因为∠AGB=90°,所以G点在圆上.

    CF与圆相切时,AF最大.

    此时FAFGBCCG

    AFx,则DF=4−xFC=4+x

    RtDFC中,利用勾股定理可得:

    42+(4−x2=(4+x2

    解得x=1.

    故答案为:1.

    【点睛】

    本题主要考查正方形的性质、圆中切线长定理以及勾股定理,熟练掌握相关性质定理是解本题的关键.

    4、3

    【解析】

    【分析】

    由切线长定理和,可得为等边三角形,则

    【详解】

    解:连接,如下图:

    分别为的切线,

    为等腰三角形,

    为等边三角形,

    故答案为:3.

    【点睛】

    本题考查了等边三角形的判定和切线长定理,解题的关键是作出相应辅助线.

    5、

    【解析】

    【分析】

    由题意易得∠OAB=90°,然后根据三角函数可进行求解.

    【详解】

    解:∵AB是⊙O的切线,

    ∴∠OAB=90°,

    在Rt△OAB中,OA=5,AB=6,

    故答案为

    【点睛】

    本题主要考查三角函数与切线的性质,熟练掌握三角函数与切线的性质是解题的关键.

    三、解答题

    1、 (1)作图见解析

    (2)证明见解析

    【解析】

    【分析】

    (1)如图,以点C为圆心BC为半径画弧交AC于点M;以B、M为圆心,大于为半径画弧,交点为N,连接CN于点D即可.

    (2)连接ADAB为直径,进而可得AE的切线.

    (1)

    解:如图,以点C为圆心BC为半径画弧交AC于点M;以B、M为圆心,大于为半径画弧,交点为N,连接CN于点D

    (2)

    解:连接AD,如图

    为直径

    又∵AB为直径

    AE的切线.

    【点睛】

    本题考查了角平分线的画法,圆周角,切线的判定等知识.解题的关键在于对知识的灵活熟练的运用.

    2、 (1)见解析;

    (2)见解析

    【解析】

    【分析】

    (1)由AB=AC知∠ABC=∠ACB,结合∠ACB=∠BCD,∠ABC=ADC得∠BCD=∠ADC,从而得证;

    (2)连接OA,由∠CAF=∠CFA知∠ACD=∠CAF+∠CFA=2∠CAF,结合∠ACB=∠BCD得∠ACD=2∠ACB,∠CAF=∠ACB,据此可知AFBC,从而得OAAF,从而得证.

    (1)

    解:∵

    又∵

    (2)

    解:如图,连接OA

    ∵已知

    AF为⊙O的切线.

    【点睛】

    本题考查了圆周角定理、垂径定理推论、切线的判定、平行线的判定和性质,熟练掌握切线的判定定理是解题的关键.

    3、 (1)见解析

    (2)见解析

    (3)

    【解析】

    【分析】

    (1)连接,根据直径所对的圆周角等于90°可得,根据等边对等角可得,进而证明,即可求得,从而证明PC是⊙O的切线;

    (2)由(1)可得,进而证明,可得,根据等角对等边证明,即可得证

    (3)作于点F,勾股定求得,证明,进而求得的长,设,根据△ACD的面积为12,求得,勾股定理求得,由可得,即可求得的长.

    (1)

    连接OC,如图,

    AB的直径,

    .

    .

    半径,

    是⊙O的切线.

    (2)

    由(1),得

    .

    平分

    .

    ,即

    .

    (3)

    于点F,如图,

    平分

    ,由勾股定理得:

    .

    .

    .

    解得(舍去).

    Rt△ACF中,由勾股定理得:

    由(2)得

    .

    【点睛】

    本题考查了切线的判定,相似三角形的性质与判定,等腰三角形的性质与判定,勾股定理,掌握相似三角形的性质与判定是解题的关键.

    4、 (1)见解析

    (2)的半径长为

    【解析】

    【分析】

    (1)根据切线的性质,可得,由平行线的性质,等边对等角,等量代换即可得,进而得证;

    (2)连接,根据直径所对的圆周角是直角,勾股定理求得,证明列出比例式,代入数值求解可得,进而求得半径

    (1)

    证明:如图,连接

    的切线,

    ,即平分

    (2)

    解:如图,连接

    中,

    由勾股定理得:

    的直径,

    ,即

    解得:

    的半径长为

    【点睛】

    本题考查了切线的性质,直径所对的圆周角是直角,相似三角形的性质与判定,勾股定理,掌握圆的相关知识以及相似三角形的是解题的关键.

    5、 (1)OP+PQON OPOMPQMN

    (2)见解析

    (3)1<r<4

    【解析】

    【分析】

    (1)利用两点之间线段最短解答即可;

    (2)过点Al的线AB,截取BC=MN,以AC为直径作⊙O

    (3)作AC的垂直平分线,交ACF,交ABE,以AF为直径作圆,过点A和点E作⊙O′,使⊙O′切EFE,求出⊙O和⊙O′的半径,从而求出半径r的范围.

    (1)

    理由:不妨在⊙O上另外任取一点P,过点PPQl,垂足为Q,连接OPOQ

    OP+PQOQOQON

    OP+PQON

    ON=OM+MN

    OP+PQOM+MN

    OP=OM

    PQMN

    故答案为:OP+PQONOP=OMPQMN

    (2)

    解:如图,

    O是求作的图形;

    (3)

    (3)如图2,

    AC的垂直平分线,交ACF,交ABE,以AF为直径作圆,过点A和点E作⊙O′,使⊙O′切EFE

    ∴∠FEO′=∠AFE=90°,

    AFEO′,

    ∴∠AEO′=∠BAC=60°,

    AO′=EO′,

    ∴△ADO′是等边三角形,

    AE=AO′,

    AB=8,∠B=30°,

    AC=AB=4,

    AF=2,

    ∴⊙O的半径是1,

    AE=AB=4,

    ∴1<r<4,

    故答案是:1<r<4.

    【点睛】

    本题考查了与圆的有关位置,等边三角形判定和性质,尺规作图等知识,解决问题的关键是找出临界位置,作出图形.

     

    相关试卷

    冀教版九年级下册第29章 直线与圆的位置关系综合与测试优秀一课一练: 这是一份冀教版九年级下册第29章 直线与圆的位置关系综合与测试优秀一课一练,共34页。试卷主要包含了在平面直角坐标系中,以点,下列说法正确的是等内容,欢迎下载使用。

    初中数学冀教版九年级下册第29章 直线与圆的位置关系综合与测试精品同步练习题: 这是一份初中数学冀教版九年级下册第29章 直线与圆的位置关系综合与测试精品同步练习题,共32页。

    初中数学冀教版九年级下册第29章 直线与圆的位置关系综合与测试优秀课时作业: 这是一份初中数学冀教版九年级下册第29章 直线与圆的位置关系综合与测试优秀课时作业,共32页。试卷主要包含了如图,PA等内容,欢迎下载使用。

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        还可免费领教师专享福利「樊登读书VIP」

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        返回
        顶部
        Baidu
        map