|试卷下载
搜索
    上传资料 赚现金
    2022年冀教版八年级数学下册第二十二章四边形定向练习试题(含答案解析)
    立即下载
    加入资料篮
    2022年冀教版八年级数学下册第二十二章四边形定向练习试题(含答案解析)01
    2022年冀教版八年级数学下册第二十二章四边形定向练习试题(含答案解析)02
    2022年冀教版八年级数学下册第二十二章四边形定向练习试题(含答案解析)03
    还剩31页未读, 继续阅读
    下载需要20学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    初中冀教版第二十二章 四边形综合与测试精品同步达标检测题

    展开
    这是一份初中冀教版第二十二章 四边形综合与测试精品同步达标检测题,共34页。试卷主要包含了下列说法不正确的是等内容,欢迎下载使用。

    八年级数学下册第二十二章四边形定向练习
    考试时间:90分钟;命题人:数学教研组
    考生注意:
    1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
    2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
    3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
    第I卷(选择题 30分)
    一、单选题(10小题,每小题3分,共计30分)
    1、如图,将边长为6个单位的正方形ABCD沿其对角线BD剪开,再把△ABD沿着DC方向平移,得到△A′B′D′,当两个三角形重叠部分的面积为4个平方单位时,它移动的距离DD′等于( )

    A.2 B. C. D.
    2、如图是用4个全等的直角三角形与1个小正方形镶嵌而成的正方形图案,已知大正方形面积为49,小正方形面积为4,若用x,y表示直角三角形的两直角边(x>y),则下列四个说法:①x2+y2=49,②x﹣y=2,③2xy+4=49,④x+y=9.
    其中说法正确的是(   )

    A.②③ B.①②③ C.②④ D.①②④
    3、如图,四边形中,,对角线,相交于点,于点,于点,连接,,若,则下列结论:
    ①;
    ②;
    ③四边形是平行四边形;
    ④图中共有四对全等三角形.
    其中正确结论的个数是( )

    A.4 B.3 C.2 D.1
    4、下列说法不正确的是(  )
    A.矩形的对角线相等
    B.直角三角形斜边上的中线等于斜边的一半
    C.对角线互相垂直且相等的四边形是正方形
    D.菱形的对角线互相垂直
    5、在四边形ABCD中,对角线AC,BD互相平分,若添加一个条件使得四边形ABCD是菱形,则这个条件可以是( )
    A.∠ABC=90° B.AC⊥BD C.AB=CD D.AB∥CD
    6、已知菱形两条对角线的长分别为8和10,则这个菱形的面积是(   )
    A.20 B.40 C.60 D.80
    7、如图,DE是的中位线,若,则BC的长为(   )

    A.8 B.7 C.6 D.7.5
    8、如图,在边长为的正方形ABCD中,点E是对角线AC上一点,且于点F,连接DE,当时,(   )

    A.1 B. C. D.
    9、平行四边形ABCD中,若∠A=2∠B,则∠C的度数为(  )
    A.120° B.60° C.30° D.15°
    10、六边形对角线的条数共有( )
    A.9 B.18 C.27 D.54
    第Ⅱ卷(非选择题 70分)
    二、填空题(5小题,每小题4分,共计20分)
    1、如图,在平面直角坐标系xOy中,菱形ABCD的顶点A,D分别在y轴的正半轴和负半轴上,顶点B在x轴的负半轴上,若OA=3OD,S菱形ABCD=16,则点C的坐标为______.

    2、如图,菱形中,,,点在边上,且,动点在边上,连接,将线段绕点顺时针旋转至线段,连接,则线段长的最小值为__.

    3、如图,正方形ABCD的边长为,作正方形A1B1C1D1,使A,B,C,D是正方形A1B1C1D1,各边的中点;做正方形A2B2C2D2,使A1,B1,C1,D1是正方形A2B2C2D2各边的中点…以此类推,则正方形A2021B2021C2021D2021的边长为 _____.

    4、两组对边分别________的四边形叫做平行四边形.
    5、矩形的两边长分别为3 cm和4 cm,则矩形的对角线长为_____.
    三、解答题(5小题,每小题10分,共计50分)
    1、如图,在中,于点E,延长BC至点F,使,连接AF,DE,DF.

    (1)求证:四边形AEFD为矩形;
    (2)若,,,求DF的长.
    2、在平面直角坐标系中,已知点,,,以点,,为顶点的平行四边形有三个,记第四个顶点分别为,,,如图所示.

    (1)若,则点,,的坐标分别是(  ),(  ),(  );
    (2)若△是以为底的等腰三角形,
    ①直接写出的值;
    ②若直线与△有公共点,求的取值范围.
    (3)若直线与△有公共点,求的取值范围.
    3、已知∠MON=90°,点A是射线ON上的一个定点,点B是射线OM上的一个动点,点C在线段OA的延长线上,且AC=OB.

    (1)如图1,CDOB,CD=OA,连接AD,BD.
    ① ;
    ②若OA=2,OB=3,则BD= ;
    (2)如图2,在射线OM上截取线段BE,使BE=OA,连接CE,当点B在射线OM上运动时,求∠ABO和∠OCE的数量关系;
    (3)如图3,当E为OB中点时,平面内一动点F满足FA=OA,作等腰直角三角形FQC,且FQ=FC,当线段AQ取得最大值时,直接写出的值.
    4、(1)【发现证明】
    如图1,在正方形中,点,分别是,边上的动点,且,求证:.小明发现,当把绕点顺时针旋转90°至,使与重合时能够证明,请你给出证明过程.
    (2)【类比引申】
    ①如图2,在正方形中,如果点,分别是,延长线上的动点,且,则(1)中的结论还成立吗?若不成立,请写出,,之间的数量关系______(不要求证明)
    ②如图3,如果点,分别是,延长线上的动点,且,则,,之间的数量关系是______(不要求证明)
    (3)【联想拓展】如图1,若正方形的边长为6,,求的长.

    5、如图,在菱形ABCD中,点E、F分别是边CD、BC的中点

    (1)求证:四边形BDEG是平行四边形;
    (2)若菱形ABCD的边长为13,对角线AC=24,求EG的长.

    -参考答案-
    一、单选题
    1、B
    【解析】
    【分析】
    先判断重叠部分的形状,然后设DD'=x,进而表示D'C等相关的线段,最后通过重叠部分的面积列出方程求出x的值即可得到答案.
    【详解】
    解:∵四边形ABCD是正方形,
    ∴△ABD和△BCD是等腰直角三角形,
    如图,记A'D'与BD的交点为点E,B'D'与BC的交点为F,

    由平移的性质得,△DD'E和△D'CF为等腰直角三角形,
    ∴重叠部分的四边形D'EBF为平行四边形,
    设DD'=x,则D'C=6-x,D'E=x,
    ∴S▱D'EBF=D'E•D'C=(6-x)x=4,
    解得:x=3+或x=3-,
    故选:B.
    【点睛】
    本题考查了正方形的性质、等腰直角三角形的性质、平移的性质,通过平移的性质得到重叠部分四边形的形状是解题的关键.
    2、B
    【解析】
    【分析】
    根据正方形的性质,直角三角形的性质,直角三角形面积的计算公式及勾股定理解答即可.
    【详解】
    如图所示,

    ∵△ABC是直角三角形,
    ∴根据勾股定理:,故①正确;
    由图可知,故②正确;
    由图可知,四个直角三角形的面积与小正方形的面积之和为大正方形的面积,
    列出等式为,
    即,故③正确;
    由可得,
    又∵,
    两式相加得:,
    整理得:,
    ,故④错误;
    故正确的是①②③.
    故答案选B.
    【点睛】
    本题主要考查了勾股定理的应用,正方形性质,完全平方公式的应用,算术平方根,准确分析判断是解题的关键.
    3、B
    【解析】
    【分析】
    由DE=BF以及DF=BE,可证明Rt△DCF≌Rt△BAE,由FC=EA,以及双垂直可证,四边形CFAE是平行四边形由此可证明②③正确.
    【详解】
    解:,

    在和中,


    ,(故①正确);
    于点,于点,


    四边形是平行四边形,
    ,(故②正确);




    四边形是平行四边形,(故③正确);
    由以上可得出:,,,
    ,,,等.(故④错误),
    故正确的有3个,
    故选:.
    【点评】
    此题主要考查了平行四边形的性质与判定以及全等三角形的判定与性质等知识,得出是解题关键.
    4、C
    【解析】
    【分析】
    利用矩形的性质,直角三角形的性质,正方形的判定,菱形的性质依次判断可求解.
    【详解】
    解;矩形的对角线相等,故选项A不符合题意;
    直角三角形斜边上的中线等于斜边的一半,故选项B不符合题意;
    对角线互相垂直且相等的四边形不一定是正方形,故选项C符合题意;
    菱形的对角线互相垂直,故选项D不符合题意;
    故选:C.
    【点睛】
    本题考查了正方形的判定,矩形的性质,菱形的性质,直角三角形的性质,熟练运用这些性质解决问题是本题的关键.
    5、B
    【解析】

    6、B
    【解析】
    【分析】
    根据菱形的面积公式求解即可.
    【详解】
    解:这个菱形的面积=×10×8=40.
    故选:B.
    【点睛】
    本题考查了菱形的面积问题,掌握菱形的面积公式是解题的关键.
    7、A
    【解析】
    【分析】
    已知DE是的中位线,,根据中位线定理即可求得BC的长.
    【详解】
    是的中位线,,

    故选:A.
    【点睛】
    此题主要考查三角形中位线定理:三角形的中位线平行于第三边,并且等于第三边的一半;掌握中位线定理是解题的关键.
    8、C
    【解析】
    【分析】
    证明,则,计算的长,得,证明是等腰直角三角形,可得的长.
    【详解】
    解:四边形是正方形,
    ,,,









    是等腰直角三角形,

    故选:C.
    【点睛】
    本题考查正方形的性质,勾股定理,等腰直角三角形,三角形的外角的性质等知识,解题的关键是在正方形中学会利用等腰直角三角形的性质解决问题,属于中考常考题型.
    9、A
    【解析】
    【分析】
    根据平行四边形的性质得出BCAD,根据平行线的性质推出∠A+∠B=180°,代入求出即可.
    【详解】
    解:∵四边形ABCD是平行四边形,

    ∴BCAD,
    ∴∠A+∠B=180°,
    把∠A=2∠B代入得:3∠B=180°,
    ∴∠B=60°,
    ∴∠C=120°
    故选:A.
    【点睛】
    本题主要考查对平行四边形的性质,平行线的性质等知识点的理解和掌握,能推出∠A+∠B=180°是解此题的关键.
    10、A
    【解析】
    【分析】
    n边形对角线的总条数为:(n≥3,且n为整数),由此可得出答案.
    【详解】
    解:六边形的对角线的条数= =9.
    故选:A.
    【点睛】
    本题考查了多边形的对角线的知识,属于基础题,解答本题的关键是掌握:n边形对角线的总条数为:(n≥3,且n为整数).
    二、填空题
    1、(-2,-8)
    【解析】
    【分析】
    由菱形的性质可得出,即,,再根据勾股定理可求出OB的长度.设,则,列等式,求出,则答案可解.
    【详解】


    四边形ABCD为菱形,
    ,,
    即,,


    设 则,
    ,即,

    解得(舍去)

    在轴上,,即轴,则轴,

    【点睛】
    本题考查了菱形的性质及勾股定理,根据菱形的性质结合勾股定理求出、、的长是解题的关键.
    2、
    【解析】
    【分析】
    在上取一点,使得,连接,,作直线交于,过点作于.证明,推出点在射线上运动,根据垂线段最短可知,当点与重合时,的值最小,求出即可.
    【详解】
    解:在上取一点,使得,连接,,作直线交于,过点作于.

    ,,
    是等边三角形,
    ,,
    ,,
    是等边三角形,
    ,,


    在和中,




    点在射线上运动,
    根据垂线段最短可知,当点与重合时,的值最小,
    ,,
    ,,

    ∴GT//AB
    ∵BG//AT
    四边形是平行四边形,
    ,,


    在中,


    的最小值为,
    故答案为:.
    【点睛】
    本题考查菱形的性质,全等三角形的判定和性质,解直角三角形等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题.
    3、
    【解析】
    【分析】
    根据勾股定理求得正方形对角线的长度,然后结合三角形中位线定理求得正方形的边长,从而探索数字变化的规律,进而求解.
    【详解】
    由题意得,正方形ABCD中
    CD=AD=
    在Rt△ACD中,
    AC==2
    ∵A,B,C,D是正方形各边的中点,
    ∴正方形的边长为2=
    在Rt△中
    ==2
    ∵是正方形各边中点
    ∴正方形的边长为2=
    以此类推
    则正方形的边长为
    故答案为:
    【点睛】
    本题考查勾股定理,正方形性质,探索数字变化的规律是解题关键.
    4、平行
    【解析】

    5、5cm
    【解析】

    三、解答题
    1、 (1)见解析
    (2)
    【解析】
    【分析】
    (1)根据线段的和差关系可得BC=EF,根据平行四边形的性质可得AD∥BC,AD=BC,即可得出AD=EF,可证明四边形AEFD为平行四边形,根据AE⊥BC即可得结论;
    (2)根据矩形的性质可得AF=DE,可得△BAF为直角三角形,利用“面积法”可求出AE的长,即可得答案.
    (1)
    ∵BE=CF,
    ∴BE+CE=CF+CE,即BC=EF,
    ∵ABCD是平行四边形,
    ∴AD∥BC,AD=BC,
    ∴AD=EF,
    ∵AD∥EF,
    ∴四边形AEFD为平行四边形,
    ∵AE⊥BC,
    ∴∠AEF=90°,
    ∴四边形AEFD为矩形.
    (2)
    ∵四边形AEFD为矩形,
    ∴AF=DE=4,DF=AE,
    ∵,,,
    ∴AB2+AF2=BF2,
    ∴△BAF为直角三角形,∠BAF=90°,
    ∴,
    ∴AE=,
    ∴.
    【点睛】
    本题考查平行四边形的性质、矩形的判定与性质及勾股定理的逆定理,熟练掌握相关性质及判定定理是解题关键.
    2、 (1)-3,3,1,3,-3,-1
    (2)①-2;②
    (3)或
    【解析】
    【分析】
    (1)分别以、、为对角线,利用平行四边形以及平移的性质可得点,,的坐标;
    (2)①根据平行公理得,、在同一直线上,、、在同一直线上,可得是等腰三角形△的中位线,求出,即可得的值;
    ②由①求得的的值可得,的坐标,分别求出直线过点,时的值即可求解;
    (3)由题意用表示出点,,的坐标,画出图形,求出直线与△交于点,时的值即可求解.
    (1)
    解:,,
    ,轴.
    以为对角线时,
    四边形是平行四边形,
    ,,
    将向左平移2个单位长度可得,即;
    以为对角线时,
    四边形是平行四边形,
    ,,
    将向右平移2个单位长度可得,即;
    以为对角线时,
    四边形是平行四边形,
    对角线的中点与的中点重合,
    的中点为,,

    故答案为:,,;
    (2)
    解:①如图,若△是以为底的等腰三角形,

    四边形,,是平行四边形,
    ,,,
    、、在同一直线上,、、在同一直线上,,
    是等腰三角形△的中位线,
    ,,
    ,,,


    ②由①得,
    ,.
    当直线过点时,,解得:,
    当直线过点时,,解得:,
    的取值范围为;
    (3)
    解:如图,,,,
    ,.

    连接、交于点,
    四边形是平行四边形,
    点、关于点对称,

    直线与△有公共点,
    当直线与△交于点,,解得:,
    时,直线与△有公共点;
    当直线与△交于点,,解得:,
    时,直线与△有公共点;
    综上,的取值范围为或.
    【点睛】
    本题考查了平行四边形的性质,坐标与图形性质,平移的性质,一次函数的性质,一次函数图象上点的坐标特征等知识,解题的关键是利用数形结合与分类讨论的思想进行求解.
    3、 (1)△DCA;
    (2)∠ABO+∠OCE=45°,理由见解析
    (3)
    【解析】
    【分析】
    (1)①由平行线的性质可得∠ACD=∠BOA=90°,再由OB=CA,OA=CD,即可利用SAS证明△AOB≌△DCA;②过点D作DR⊥BO交BO延长线于R,由①可知△AOB≌△DCA,得到CD=OA=2,AC=OB=3,再由OC⊥OB,DR⊥OB,CD∥OB,得到DR=OC=OA+AC=5(平行线间距离相等),同理可得OR=CD=3,即可利用勾股定理得到;
    (2)如图所示,过点C作CW⊥AC,使得CW=OA,连接AW,BW,先证明△AOB≌△WCA得到AB=AW,∠ABO=∠WAC,然后推出∠ABW=∠AWB=45°,证明四边形BECW是平行四边形,得到BW∥CE,则∠WJC=∠BWA=45°,由三角形外角的性质得到∠WJC=∠WAC+∠JCA,则∠ABO+∠OCE=45°;
    (3)如图3-1所示,连接AF,则,如图3-2所示,当A、F、Q三点共线时,AQ有最大值,由此求解即可.
    (1)
    解:①∵CD∥OB,
    ∴∠ACD=∠BOA=90°,
    又∵OB=CA,OA=CD,
    ∴△AOB≌△DCA(SAS);
    故答案为:△DCA;

    ②如图所示,过点D作DR⊥BO交BO延长线于R,
    由①可知△AOB≌△DCA,
    ∴CD=OA=2,AC=OB=3,
    ∵OC⊥OB,DR⊥OB,CD∥OB,
    ∴DR=OC=OA+AC=5(平行线间距离相等),
    同理可得OR=CD=3,
    ∴BR=OB+OR=5,
    ∴;
    故答案为:;

    (2)
    解:∠ABO+∠OCE=45°,理由如下:
    如图所示,过点C作CW⊥AC,使得CW=OA,连接AW,BW,
    在△AOB和△WCA中,

    ∴△AOB≌△WCA(SAS),
    ∴AB=AW,∠ABO=∠WAC,
    ∵∠AOB=90°,
    ∴∠ABO+∠BAO=90°,
    ∴∠BAO+∠WAC=90°,
    ∴∠BAW=90°,
    又∵AB=AW,
    ∴∠ABW=∠AWB=45°,
    ∵BE⊥OC,CW⊥OC,
    ∴BE∥CW,
    又∵BE=OA=CW,
    ∴四边形BECW是平行四边形,
    ∴BW∥CE,
    ∴∠WJC=∠BWA=45°,
    ∵∠WJC=∠WAC+∠JCA,
    ∴∠ABO+∠OCE=45°;

    (3)
    解:如图3-1所示,连接AF,
    ∴,

    ∴如图3-2所示,当A、F、Q三点共线时,AQ有最大值,
    ∵E是OB的中点,BE=OA,
    ∴BE=OE=OA,
    ∴OB=AC=2OA,
    ∵△CFQ是等腰直角三角形,CF=QF,
    ∴∠CFQ=∠CFA=90°,
    ∴,
    ∴,
    ∴.

    【点睛】
    本题主要考查了全等三角形的性质与判定,勾股定理,平行四边形的性质与判定,平行线的性质与判定等等,熟知相关知识是解题的关键.
    4、(1)见解析;(2)①不成立,结论:;②,见解析;(3)
    【解析】
    【分析】
    (1)证明,可得出,则结论得证;
    (2)①将绕点顺时针旋转至根据可证明,可得,则结论得证;②将绕点逆时针旋转至,证明,可得出,则结论得证;
    (3)求出,设,则,,在中,得出关于的方程,解出则可得解.
    【详解】
    (1)证明:把绕点顺时针旋转至,如图1,

    ,,,

    ,,三点共线,








    (2)①不成立,结论:;
    证明:如图2,将绕点顺时针旋转至,

    ,,,,




    ②如图3,将绕点逆时针旋转至,

    ,,







    即.
    故答案为:.
    (3)解:由(1)可知,

    正方形的边长为6,




    设,则,,
    在中,


    解得:.


    【点睛】
    本题属于四边形综合题,主要考查了正方形的性质、旋转的性质、全等三角形的判定与性质以及勾股定理的综合应用,解题的关键是作辅助线构造全等三角形,根据全等三角形的对应边相等进行推导.
    5、 (1)证明见解析
    (2)10
    【解析】
    【分析】
    (1)利用AC平分∠BAD,AB∥CD,得到∠DAC=∠DCA,即可得到AD=DC,利用一组对边平行且相等可证明四边形ABCD是平行四边形,再结合AB=AD,即可求证结论;
    (2)根据菱形的性质,得到CD=13,AO=CO=12,结合中位线性质,可得四边形BDEG是平行四边形,利用勾股定理即可得到OB、OD的长度,即可求解.
    (1)
    证明:∵AC平分∠BAD,AB∥CD,
    ∴∠DAC=∠BAC,∠DCA=∠BAC,
    ∴∠DAC=∠DCA,
    ∴AD=DC,
    又∵AB∥CD,AB=AD,
    ∴AB∥CD且AB=CD,
    ∴四边形ABCD是平行四边形,
    ∵AB=AD,
    ∴四边形ABCD是菱形.
    (2)
    解:连接BD,交AC于点O,如图:

    ∵菱形ABCD的边长为13,对角线AC=24,
    ∴CD=13,AO=CO=12,
    ∵点E、F分别是边CD、BC的中点,
    ∴EF∥BD(中位线),
    ∵AC、BD是菱形的对角线,
    ∴AC⊥BD,OB=OD,
    又∵AB∥CD,EF∥BD,
    ∴DE∥BG,BD∥EG,
    ∵四边形BDEG是平行四边形,
    ∴BD=EG,
    在△COD中,
    ∵OC⊥OD,CD=13,CO=12,
    ∴,
    ∴EG=BD=10.
    【点睛】
    本题考查了平行四边形性质判定方法、菱形的判定和性质、等腰三角形性质、勾股定理等知识,关键在于熟悉四边形的判定方法和在题目中找到合适的判定条件.

    相关试卷

    数学八年级下册第二十二章 四边形综合与测试精品综合训练题: 这是一份数学八年级下册第二十二章 四边形综合与测试精品综合训练题,共29页。

    冀教版八年级下册第二十二章 四边形综合与测试精品练习: 这是一份冀教版八年级下册第二十二章 四边形综合与测试精品练习,共30页。

    数学八年级下册第二十二章 四边形综合与测试优秀同步训练题: 这是一份数学八年级下册第二十二章 四边形综合与测试优秀同步训练题,共26页。试卷主要包含了下列说法不正确的是,已知等内容,欢迎下载使用。

    • 课件
    • 教案
    • 试卷
    • 学案
    • 其他

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        还可免费领教师专享福利「樊登读书VIP」

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        返回
        顶部
        Baidu
        map