开学活动
搜索
    上传资料 赚现金

    2022年精品解析冀教版八年级数学下册第二十二章四边形定向训练练习题(精选)

    2022年精品解析冀教版八年级数学下册第二十二章四边形定向训练练习题(精选)第1页
    2022年精品解析冀教版八年级数学下册第二十二章四边形定向训练练习题(精选)第2页
    2022年精品解析冀教版八年级数学下册第二十二章四边形定向训练练习题(精选)第3页
    还剩24页未读, 继续阅读
    下载需要20学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    冀教版八年级下册第二十二章 四边形综合与测试精品课后复习题

    展开

    这是一份冀教版八年级下册第二十二章 四边形综合与测试精品课后复习题,共27页。试卷主要包含了下列命题不正确的是等内容,欢迎下载使用。
    八年级数学下册第二十二章四边形定向训练 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。I卷(选择题  30分)一、单选题(10小题,每小题3分,共计30分)1、如图,在平行四边形中,平分,交边于,则的长为(       A.1 B.2 C.3 D.52、如图,四边形ABCD是平行四边形,对角线ACBD交于点O,若,则的度数为(       A.157° B.147° C.137° D.127°3、如图,点DE分别是△ABCBABC的中点,AC=3,则DE的长为(       A.2 B. C.3 D.4、平面上六个点ABCDEF,构成如图所示的图形,则∠A+∠B+∠C+∠D+∠E+∠F度数是(       A.135度 B.180度 C.200度 D.360度5、如图,四边形ABCD是菱形,对角线ACBD交于点OE是边AD的中点,过点EEFBDEGAC,点FG为垂足,若AC=10,BD=24,则FG的长为(       A. B.8 C. D.6、下列命题不正确的是(       A.三边对应相等的两三角形全等B.若,则C.有一组对边平行、另一组对边相等的四边形是平行四边形D.的三边为abc,若,则是直角三角形.7、如图,在正方形ABCD中,对角线ACBD相交于点OEBC上一点,CE=6,FDE的中点.若OF的长为1,则△CEF的周长为(       A.14 B.16 C.18 D.128、若菱形的周长为8,高为2,则菱形的面积为(       A.2 B.4 C.8 D.169、如图,正方形ABCD的两条对角线ACBD相交于点O,点EBD上,且BE=AD,则∠ACE的度数为(   )A.22.5° B.27.5° C.30° D.35°10、如图,菱形ABCD的面积为24cm2,对角线BD长6cm,点OBD的中点,过点AAEBCCB的延长线于点E,连接OE,则线段OE的长度是(       A.3cm B.4cm C.4.8cm D.5cm第Ⅱ卷(非选择题  70分)二、填空题(5小题,每小题4分,共计20分)1、(1)平行四边形的对边________.几何语言:因为四边形ABCD是平行四边形,所以AB=________,AD=________. (2)平行四边形的对角________.几何语言:因为四边形ABCD是平行四边形,所以∠A=________,∠B=________.2、如图,在▱ABCD中,AC是对角线,∠ACD=90°,点EBC的中点,AF平分∠BACCFAF于点F,连接EF.已知AB=5,BC=13,则EF的长为__.3、如图,E是正方形ABCD的对角线BD上一点,连接CE,过点E,垂足为点F.若,则正方形ABCD的面积为______.4、平行四边形的对角线________.几何语言:∵四边形ABCD是平行四边形,AO=________,BO=________(平行四边形的对角线互相平分).5、如图①,小刚沿菱形纸片ABCD各边中点的连线裁剪得到四边形纸片EFGH,再将纸片EFGH按图②所示的方式分别沿MNPQ折叠,当PNEF时,若阴影部分的周长之和为16,△AEH,△CFG的面积之和为12,则菱形纸片ABCD的一条对角线BD的长为_____.三、解答题(5小题,每小题10分,共计50分)1、如图1,已知∠ACDABC的一个外角,我们容易证明∠ACD=∠A+∠B,即:三角形的一个外角等于与它不相邻的两个内角的和.那么,三角形的一个内角与它不相邻的两个外角的和之间存在怎样的数量关系呢?(1)尝试探究:如图2,已知:∠DBC与∠ECB分别为ABC的两个外角,则∠DBC+∠ECB-∠A     180°.(横线上填<、=或>)(2)初步应用:如图3,在ABC中,BPCP分别平分外角∠DBC、∠ECB,∠P与∠A有何数量关系?请利用上面的结论直接写出答案:∠P=     (3)解决问题:如图4,在四边形ABCD中,BPCP分别平分外角∠EBC、∠FCB,请利用上面的结论探究∠P与∠BAD、∠CDA的数量关系.2、【问题情境】如图1,在中,,垂足为D,我们可以得到如下正确结论:①;②;③,这些结论是由古希酷著名数学家欧几里得在《几何原本》最先提出的,我们称之为“射影定理”,又称“欧几里德定理”.(1)请证明“射影定理”中的结论③(2)【结论运用】如图2,正方形的边长为6,点O是对角线的交点,点E上,过点C,垂足为F,连接①求证:②若,求的长.3、已知:线段m求作:矩形ABCD,使矩形宽ABm,对角线ACm4、如图,已知矩形ABCDABAD).EBC上的点,AE=AD(1)在线段CD上作一点F,连接EF,使得∠EFC=∠BEA(请用直尺和圆规作图,保留作图痕迹);(2)在(1)作出的图形中,若AB=4,AD=5,求DF的值.5、如图,正方形ABCD和正方形CEFG,点GCD上,AB=5,CE=2,TAF的中点,求CT的长. -参考答案-一、单选题1、B【解析】【分析】先由平行四边形的性质得,再证,即可求解.【详解】解:四边形是平行四边形,平分故选:B.【点睛】本题考查了平行四边形的性质,等腰三角形的判定等知识,解题的关键是灵活应用这些知识解决问题.2、C【解析】【分析】根据平行四边形的性质推出AO=AB,求出∠AOB的度数,即可得到的度数.【详解】解:∵四边形ABCD是平行四边形,AC=2AOAO=AB=故选:C【点睛】此题考查了平行四边形的性质,三角形的内角和,利用邻补角求角度,正确掌握平行四边形的性质是解题的关键.3、D【解析】4、D【解析】【分析】根据三角形外角性质及四边形内角和求解即可.【详解】解:如下图所示:根据三角形的外角性质得,∠1=∠C+∠E,∠2=∠B+∠D∵∠1+∠2+∠A+∠F=360°,∴∠A+∠B+∠C+∠D+∠E+∠F=360°,故选:D.【点睛】此题考查了三角形的外角性质,熟记三角形外角性质及四边形内角和为360°是解题的关键.5、A【解析】【分析】由菱形的性质得出OA=OC=5,OB=OD=12,ACBD,根据勾股定理求出AD=13,由直角三角形斜边上的中线等于斜边的一半求出OE=6.5,证出四边形EFOG是矩形,得到EO=GF即可得出答案.【详解】解:连接OE∵四边形ABCD是菱形,OA=OC=5,OB=OD=12,ACBDRtAOD中,AD==13,又∵E是边AD的中点,OE=AD=×13=6.5,EFBDEGACACBD∴∠EFO=90°,∠EGO=90°,∠GOF=90°,∴四边形EFOG为矩形,FG=OE=6.5.故选:A.【点睛】本题考查了菱形的性质、矩形的判定与性质、直角三角形斜边上中线定理等知识;熟练掌握菱形的性质和矩形的性质是解题的关键.6、C【解析】【分析】根据三角形全等的判定定理(定理)、乘方运算法则、平行四边形的判定、勾股定理的逆定理逐项判断即可得.【详解】解:A、三边对应相等的两三角形全等,此命题正确,不符题意;B、若,则,此命题正确,不符题意;C、有一组对边平行、另一组对边相等的四边形有可能是等腰梯形,不一定是平行四边形,所以此项命题不正确,符合题意;D、的三边为,若,即,则是直角三角形,此命题正确,不符题意;故选:C.【点睛】本题考查了三角形全等的判定定理、乘方运算法则、平行四边形的判定、勾股定理的逆定理,熟练掌握各定理是解题关键.7、B【解析】【分析】根据中位线的性质及直角三角形斜边上中线的性质可得:,结合图形得出的周长为,再由中位线的性质得出,在中,利用勾股定理确定,即可得出结论.【详解】解:在正方形ABCD中,FDE的中点,OBD的中点,OF的中位线且CF斜边上的中线,的周长为中,的周长为故选:B【点睛】题目主要考查正方形的性质,三角形中位线的性质,勾股定理,直角三角形斜边中线的性质等,理解题意,熟练掌握运用各个知识点是解题关键.8、B【解析】【分析】根据周长求出边长,利用菱形的面积公式即可求解.【详解】∵菱形的周长为8,∴边长=2,∴菱形的面积=2×2=4,故选:B.【点睛】此题考查菱形的性质,熟练掌握菱形的面积=底×高是解题的关键.9、A【解析】【分析】利用正方形的性质证明∠DBC=45°和BE=BC,进而证明∠BEC=67.5°.【详解】解:∵四边形ABCD是正方形,BC=AD,∠DBC=45°,BE=ADBE=BC∴∠BEC=∠BCE=(180°﹣45°)÷2=67.5°,ACBD∴∠COE=90°,∴∠ACE=90°﹣∠BEC=90°﹣67.5°=22.5°,故选:A.【点睛】本题考查正方形的性质,以及等腰三角形的性质,掌握正方形的性质并加以利用是解决本题的关键.10、B【解析】【分析】由菱形的性质得出BD=6cm,由菱形的面积得出AC=8cm,再由直角三角形斜边上的中线等于斜边的一半即可得出结果.【详解】解:∵四边形ABCD是菱形,BDACBD=6cm,S菱形ABCDAC×BD=24cm2AC=8cm,AEBC∴∠AEC=90°,OEAC=4cm,故选:B.【点睛】本题主要考查了菱形的性质、直角三角形斜边上的中线性质;熟练掌握菱形的性质是解题的关键.二、填空题1、     相等     CD     BC     相等     C     D【解析】2、##3.5【解析】【分析】延长ABCF交于点H,由“ASA”可证,可得ACAH=12,HFCF,由三角形中位线定理可求解.【详解】解:如图,延长ABCF交于点H∵四边形ABCD是平行四边形,∴∠ACD=∠BAC=90°,AF平分∠BAC∴∠BAF=∠CAF=45°,中,ACAH=12,HFCFBHAHAB=7,∵点EBC的中点,HFCFEFBH故答案为:【点睛】本题考查了平行四边形的性质,全等三角形的判定和性质,勾股定理,三角形中位线的定理,添加恰当辅助线构造全等三角形是本题的关键.3、49【解析】【分析】延长FEAB于点M,则,由正方形的性质得,推出是等腰直角三角形,得出,由勾股定理求出CM,故得出BC,由正方形的面积公式即可得出答案.【详解】如图,延长FEAB于点M,则∵四边形ABCD是正方形,是等腰直角三角形,中,故答案为:49.【点睛】本题考查正方形的性质以及勾股定理,掌握正方形的性质是解题的关键.4、     互相平分     CO     DO【解析】5、12【解析】【分析】证出EHABD的中位线,得出BD=2EH=4HN,由题意可以设AN=PC=xEN=HN=PF=PG=y.构建方程组求出xy即可解决问题.【详解】解:连接BD,如图所示:∵四边形ABCD是菱形,AB=ADACBD垂直平分,EAB的中点,HAD的中点,AE=AHEHABD的中位线,EN=HNBD=2EH=4HN由题意可以设AN=PC=xEN=HN=PF=PG=y则有解得:AN=2,HN=3,BD=4HN=12;故答案为:12.【点睛】本题考查了菱形的性质,矩形的判定和性质、三角形中位线定理、方程组的解法等知识,解题的关键是学会利用参数构建方程解决问题.三、解答题1、 (1)=(2)∠P=90°-A(3)∠P=180°-BADCDA,探究见解析【解析】【分析】(1)根据三角形外角的性质得:∠DBC=∠A+∠ACB,∠ECB=∠A+∠ABC,两式相加可得结论;(2)根据角平分线的定义得:∠CBP=DBC,∠BCP=ECB,根据三角形内角和可得:∠P的式子,代入(1)中得的结论:∠DBC+∠ECB=180°+∠A,可得:∠P=90°−A(3)根据平角的定义得:∠EBC=180°-∠1,∠FCB=180°-∠2,由角平分线得:∠3=EBC=90°−∠1,∠4=FCB=90°−∠2,相加可得:∠3+∠4=180°−(∠1+∠2),再由四边形的内角和与三角形的内角和可得结论.(1)DBC+∠ECB-∠A=180°,理由是:∵∠DBC=∠A+∠ACB,∠ECB=∠A+∠ABC∴∠DBC+∠ECB=2∠A+∠ACB+∠ABC=180°+∠A∴∠DBC+∠ECB-∠A=180°,故答案为:=;(2)P=90°-A理由是:∵BP平分∠DBCCP平分∠ECB∴∠CBP=DBC,∠BCP=ECB∵△BPC中,∠P=180°-∠CBP-∠BCP=180°-(∠DBC+∠ECB),∵∠DBC+∠ECB=180°+∠A∴∠P=180°-(180°+∠A)=90°-A故答案为:∠P=90°-A(3)P=180°-BAD-CDA理由是:如图,∵∠EBC=180°-∠1,∠FCB=180°-∠2,BP平分∠EBCCP平分∠FCB∴∠3=EBC=90°-∠1,∠4=FCB=90°-∠2,∴∠3+∠4=180°-(∠1+∠2),∵四边形ABCD中,∠1+∠2=360°-(∠BAD+∠CDA),又∵△PBC中,∠P=180°-(∠3+∠4)=(∠1+∠2),∴∠P=×[360°-(∠BAD+∠CDA)]=180°-(∠BAD+∠CDA)=180°-BAD-CDA【点睛】本题是四边形和三角形的综合问题,考查了三角形和四边形的内角和定理、三角形外角的性质、角平分线的定义等知识,熟练掌握三角形外角的性质是关键.2、 (1)见解析;(2)①见解析;②【解析】【分析】(1)由AA证明,再由相似三角形对应边称比例得到,继而解题;(2)①由“射影定理”分别解得,整理出,再结合即可证明②由勾股定理解得,再根据得到,代入数值解题即可.(1)证明:(2)四边形ABCD是正方形中,【点睛】本题考查相似三角形的综合题,涉及勾股定理、正方形等知识,是重要考点,掌握相关知识是解题关键.3、见详解【解析】【分析】先作m的垂直平分线,取m的一半为AB,然后以点A为圆心,以m长为半径画弧,交m的垂直平分线于C,连结AC,利用作一个角等于已知角,过ABC的平行线AD,过CAB的平行线CD,两线交于D即可.【详解】解:先作m的垂直平分线,取m的一半为AB以点A为圆心,以m长为半径画弧,交m的垂直平分线于C,连结ACABC的平行线,与过CAB的平行线交于D则四边形ABCD为所求作矩形; ADBCCDAB∴四边形ABCD为平行四边形,BCAB∴∠ABC=90°,∴四边形ABCD为矩形,AB=AC=m,∴矩形的宽与对角线满足条件,∴四边形ABCD为所求作矩形.【点睛】本题考查矩形作图,线段垂直平分线,作线段等于已知线段,平行线作法,掌握矩形作图,线段垂直平分线,作线段等于已知线段,平行线作法是解题关键.4、 (1)见解析(2)【解析】【分析】(1)作∠DAE的角平分线,与DC的交点即为所求,理由:可先证明△AEF≌△ADF,可得∠AEF=∠D=90°,从而得到∠DAE+∠DFE=180°,进而得到∠EFC=∠DAE,再由ADBC,即可求解;(2)根据矩形的性质可得∠B=∠C=∠D=90°,ADBC=5,ABCD=4,从而得到BE=3,进而得到EC=2,然后在 中,由勾股定理,即可求解.(1)解:如图,作∠DAE的角平分线,与DC的交点即为所求.AE=AD,∠EAF=∠DAFAF=AF∴△AEF≌△ADF∴∠AEF=∠D=90°,∴∠DAE+∠DFE=180°,∵∠EFC+∠DFE=180°,∴∠EFC=∠DAE∵在矩形ABCD中,ADBC∴∠BEA=∠DAE∴∠EFC=∠BEA(2)解:∵四边形ABCD是矩形,∴∠B=∠C=∠D=90°,ADBC=5,ABCD=4,AEAD=5,BE=3,ECBCBE=5﹣3=2,由(1)得:△AEF≌△ADF 中,【点睛】本题主要考查了矩形的性质,全等三角形的判定和性质,勾股定理等知识,熟练掌握矩形的性质,全等三角形的判定和性质,勾股定理是解题的关键.5、【解析】【分析】连接ACCF,如图,根据正方形的性质得到AC=AB=5CF=CE=2,∠ACD=45°,∠GCF=45°,则利用勾股定理得到AF=,然后根据直角三角形斜边上的中线性质得到CT的长.【详解】解:连接ACCF,如图,∵四边形ABCD和四边形CEFG都是正方形,AC=AB=5CF=CE=2,∠ACD=45°,∠GCF=45°,∴∠ACF=45°+45°=90°,RtACFTAF的中点,CT的长为【点睛】本题考查了正方形的性质:正方形的四条边都相等,四个角都是直角;正方形的两条对角线相等,互相垂直平分,并且每条对角线平分一组对角;正方形具有四边形、平行四边形、矩形、菱形的一切性质,也考查了直角三角形斜边上的中线性质. 

    相关试卷

    初中数学冀教版八年级下册第二十二章 四边形综合与测试精品综合训练题:

    这是一份初中数学冀教版八年级下册第二十二章 四边形综合与测试精品综合训练题

    初中数学冀教版八年级下册第二十二章 四边形综合与测试精品课后测评:

    这是一份初中数学冀教版八年级下册第二十二章 四边形综合与测试精品课后测评,共29页。

    冀教版八年级下册第二十二章 四边形综合与测试优秀练习题:

    这是一份冀教版八年级下册第二十二章 四边形综合与测试优秀练习题,共27页。试卷主要包含了下列关于的叙述,正确的是等内容,欢迎下载使用。

    英语朗读宝
    • 课件
    • 教案
    • 试卷
    • 学案
    • 其他
    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map