![2022年最新冀教版八年级数学下册第二十二章四边形专项测评试题(含答案解析)01](http://img-preview.51jiaoxi.com/2/3/12735045/0/0.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![2022年最新冀教版八年级数学下册第二十二章四边形专项测评试题(含答案解析)02](http://img-preview.51jiaoxi.com/2/3/12735045/0/1.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![2022年最新冀教版八年级数学下册第二十二章四边形专项测评试题(含答案解析)03](http://img-preview.51jiaoxi.com/2/3/12735045/0/2.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
冀教版八年级下册第二十二章 四边形综合与测试优秀习题
展开八年级数学下册第二十二章四边形专项测评
考试时间:90分钟;命题人:数学教研组
考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)
一、单选题(10小题,每小题3分,共计30分)
1、如图,平行四边形ABCD的边BC上有一动点E,连接DE,以DE为边作矩形DEGF且边FG过点A.在点E从点B移动到点C的过程中,矩形DEGF的面积( )
A.先变大后变小 B.先变小后变大 C.一直变大 D.保持不变
2、如图,在矩形ABCD中,动点P从点A出发,沿A→B→C运动,设,点D到直线PA的距离为y,且y关于x的函数图象如图所示,则当和的面积相等时,y的值为( )
A. B. C. D.
3、如图是用4个全等的直角三角形与1个小正方形镶嵌而成的正方形图案,已知大正方形面积为49,小正方形面积为4,若用x,y表示直角三角形的两直角边(x>y),则下列四个说法:①x2+y2=49,②x﹣y=2,③2xy+4=49,④x+y=9.
其中说法正确的是( )
A.②③ B.①②③ C.②④ D.①②④
4、如图,在▱ABCD中,点E在边BC上,连接AE,EM⊥AE,垂足为E,交CD于点M.AF⊥BC,垂足为F.BH⊥AE,垂足为H,交AF于点N,连接AC、NE.若AE=BN,AN=CE,则下列结论中正确的有( )个.
①;②是等腰直角三角形;③是等腰直角三角形;④;⑤.
A.1 B.3 C.4 D.5
5、如图,五边形中,,CP,DP分别平分,,则( )
A.60° B.72° C.70° D.78°
6、在平行四边形ABCD中,∠A ∶∠ B ∶∠ C ∶∠ D的值可以是( )
A.1∶2∶3∶4 B.1∶2∶2∶1 C.2∶2∶1∶1 D.1∶2∶1∶2
7、在Rt△ABC中,∠B=90°,D,E,F分别是边BC,CA,AB的中点,AB=6,BC=8,则四边形AEDF的周长是( )
A.18 B.16 C.14 D.12
8、正方形具有而矩形不一定具有的性质是( )
A.四个角相等 B.对角线互相垂直
C.对角互补 D.对角线相等
9、若n边形每个内角都为156°,那么n等于( )
A.8 B.12 C.15 D.16
10、如图,在平行四边形中,平分,交边于,,,则的长为( )
A.1 B.2 C.3 D.5
第Ⅱ卷(非选择题 70分)
二、填空题(5小题,每小题4分,共计20分)
1、如图,A、B、C均为一个正十边形的顶点,则∠ACB=_____°.
2、如图,,D为外一点,且交的延长线于E点,若,则_______.
3、如图,将长方形ABCD沿AE,EF翻折使其B、C重合于点H,点D落在点G的位置,HE与AD交于点P,连接HF,当,时,则P到HF的距离是______.
4、过某个多边形一个顶点的所有对角线,将此多边形分成7个三角形,则此多边形的边数______.
5、如图,菱形ABCD的边长为4,∠BAD=120°,E是边CD的中点,F是边AD上的一个动点,将线段EF绕着点E顺时针旋转60°得到线段EF',连接AF'、BF',则△ABF'的周长的最小值是________________.
三、解答题(5小题,每小题10分,共计50分)
1、已知正方形与正方形,,.
(1)如图1,若点和点重合,点在线段上,点在线段的延长线上,连接、、,将阴影部分三角形的面积记作,则 (用含有、的代数式表示).
(2)如图2,若点与点重合,点在线段上,点在线段的延长线上,连接、、,将阴影部分三角形的面积记作,则 (用含有、的代数式表示).
(3)如图3,若将正方形沿正方形的边所在直线平移,使得点、在线段上(点不与点重合、点不与点重合),连接、、,设,将阴影部分三角形的面积记作,则 (用含有、、的代数式表示).
(4)如图4,若将正方形沿正方形的边所在直线平移,使得点、在的延长线上,连接、、,设,将阴影部分三角形的面积记作,则 (用含有、、的代数式表示).
2、在平面直角坐标系中,已知点,,,以点,,为顶点的平行四边形有三个,记第四个顶点分别为,,,如图所示.
(1)若,则点,,的坐标分别是( ),( ),( );
(2)若△是以为底的等腰三角形,
①直接写出的值;
②若直线与△有公共点,求的取值范围.
(3)若直线与△有公共点,求的取值范围.
3、如图,是一张放在平面直角坐标系中的长方形纸片,为原点,点在轴的正半轴上,点在轴的正半轴上,,,在边上取一点,将纸片沿翻折,使点落在边上的点处.
(1)直接写出点的坐标____________________;
(2)求、两点的坐标.
4、如图,矩形ABCD的对角线AC、BD相交于点O,AB=5cm,∠BOC=120°,求矩形对角线的长.
5、已知在与中,,点在同一直线上,射线分别平分.
(1)如图1,试说明的理由;
(2)如图2,当交于点G时,设,求与的数量关系,并说明理由;
(3)当时,求的度数.
-参考答案-
一、单选题
1、D
【解析】
【分析】
连接AE,根据,推出,由此得到答案.
【详解】
解:连接AE,
∵,
∴,
故选:D.
.
【点睛】
此题考查了平行四边形的性质,矩形的性质,正确连接辅助线AE是解题的关键.
2、D
【解析】
【分析】
先结合图象分析出矩形AD和AB边长分别为4和3,当△PCD和△PAB的面积相等时可知P点为BC中点,利用面积相等求解y值.
【详解】
解:当P点在AB上运动时,D点到AP的距离不变始终是AD长,从图象可以看出AD=4,
当P点到达B点时,从图象看出x=3,即AB=3.
当△PCD和△PAB的面积相等时,P点在BC中点处,此时△ADP面积为,
在Rt△ABP中,,
由面积相等可知:,解得,
故选:D.
【点睛】
本题主要考查了函数图形的认识,分析图象找到对应的矩形的边长,解决动点问题就是“动中找静”,结合图象找到“折点处的数据真正含义”便可解决问题.
3、B
【解析】
【分析】
根据正方形的性质,直角三角形的性质,直角三角形面积的计算公式及勾股定理解答即可.
【详解】
如图所示,
∵△ABC是直角三角形,
∴根据勾股定理:,故①正确;
由图可知,故②正确;
由图可知,四个直角三角形的面积与小正方形的面积之和为大正方形的面积,
列出等式为,
即,故③正确;
由可得,
又∵,
两式相加得:,
整理得:,
,故④错误;
故正确的是①②③.
故答案选B.
【点睛】
本题主要考查了勾股定理的应用,正方形性质,完全平方公式的应用,算术平方根,准确分析判断是解题的关键.
4、C
【解析】
【分析】
证出∠NBF=∠EAF=∠MEC,再证明△NBF≌△EAF(AAS),得出BF=AF,NF=EF,证明△ANB≌△CEA得出∠CAE=∠ABN,推出∠ABF=∠FAC=45°;再证明△ANE≌△ECM得出CM=NE,由NF=NE=MC,得出AF=MC+EC,即可得出结论.
【详解】
解:∵BH⊥AE,AF⊥BC,AE⊥EM,
∴∠AEB+∠NBF=∠AEB+∠EAF=∠AEB+∠MEC=90°,
∴∠NBF=∠EAF=∠MEC,
在△NBF和△EAF中,,
∴△NBF≌△EAF(AAS);
∴BF=AF,NF=EF,
∴∠ABC=45°,∠ENF=45°,
∴△NFE是等腰直角三角形,故③正确;
∵∠ANB=90°+∠EAF,∠CEA=90°+∠MEC,
∴∠ANB=∠CEA,
在△ANB和△CEA中,,
∴△ANB≌△CEA(SAS),故①正确;
∵AN=CE,NF=EF,
∴BF=AF=FC,
又∵AF⊥BC,∠ABC=45°,
∴△ABC是等腰直角三角形,故②正确;
在▱ABCD中,CD∥AB,且△ABC、△NFE都是等腰直角三角形,
∴∠ACD=∠BAC=90°,∠ACB=∠FNE=45°,
∴∠ANE=∠BCD=135°,
在△ANE和△ECM中,,
∴△ANE≌△ECM(ASA),故④正确;
∴CM=NE,
又∵NF=NE=MC,
∴AF=MC+EC,
∴AD=BC=2AF=MC+2EC,故⑤错误.
综上,①②③④正确,共4个,
故选:C.
【点睛】
本题考查了平行四边形的性质、全等三角形的判定与性质、等腰直角三角形的判定和性质等知识;熟练掌握平行四边形的性质,证明三角形全等是解题的关键.
5、C
【解析】
【分析】
根据五边形的内角和等于,由,可求的度数,再根据角平分线的定义可得与的角度和,进一步求得的度数.
【详解】
解:五边形的内角和等于,,
,
、的平分线在五边形内相交于点,
,
.
故选:C.
【点睛】
本题主要考查了多边形的内角和公式,角平分线的定义,解题的关键是熟记公式,注意整体思想的运用.
6、D
【解析】
略
7、B
【解析】
略
8、B
【解析】
略
9、C
【解析】
【分析】
首先求得外角的度数,然后利用多边形的外角和是360度,列式计算即可求解.
【详解】
解:由题意可知:n边形每个外角的度数是:180°-156°=24°,
则n=360°÷24°=15.
故选:C.
【点睛】
本题考查了多边形的外角与内角,熟记多边形的外角和定理是关键.
10、B
【解析】
【分析】
先由平行四边形的性质得,,再证,即可求解.
【详解】
解:四边形是平行四边形,
,,
,
平分,
,
,
,
,
故选:B.
【点睛】
本题考查了平行四边形的性质,等腰三角形的判定等知识,解题的关键是灵活应用这些知识解决问题.
二、填空题
1、
【解析】
【分析】
根据正多边形外角和和内角和的性质,得、;根据四边形内角和的性质,计算得;根据五边形内角和的性质,计算得,再根据三角形外角的性质计算,即可得到答案.
【详解】
如图,延长BA
∵正十边形
∴,正十边形内角,即
根据题意,得四边形内角和为:,且
∴
∴
根据题意,得五边形内角和为:,且
∴
∴
故答案为:.
【点睛】
本题考查了正多边形、三角形外角的知识;解题的关键是熟练掌握正多边形外角和、正多边形内角和的性质,从而完成求解.
2、2
【解析】
【分析】
过点D作DM⊥CB于M,证出∠DAE=∠DBM,判定△ADE≌△BDM,得到DM=DE=3,证明四边形CEDM是矩形,得到CE=DM=3,由AE=1,求出BC=AC=2.
【详解】
解:∵DE⊥AC,
∴∠E=∠C=90°,
∴,
过点D作DM⊥CB于M,则∠M=90°=∠E,
∵AD=BD,
∴∠BAD=∠ABD,
∵AC=BC,
∴∠CAB=∠CBA,
∴∠DAE=∠DBM,
∴△ADE≌△BDM,
∴DM=DE=3,
∵∠E=∠C=∠M =90°,
∴四边形CEDM是矩形,
∴CE=DM=3,
∵AE=1,
∴BC=AC=2,
故答案为:2.
【点睛】
此题考查了全等三角形的判定及性质,矩形的判定及性质,等边对等角证明角度相等,正确引出辅助线证明△ADE≌△BDM是解题的关键.
3、
【解析】
【分析】
连接FC,过点H作,过点P作,线段PM长度即为所求,根据折叠及矩形的性质可得,,,,,,由全等三角形及平行线的判定得出,,,点A、H、G三点共线,且,点H为AG中点,设,则,,利用勾股定理可得,,由三角形中位线的判定及性质可得,,最后在两个三角形与中,利用等面积法求解即可得.
【详解】
解:如图所示:连接FC,过点H作,过点P作,线段PM长度即为所求,
∵长方形ABCD沿AE,EF翻折使其B、C重合于点H,点D落在点G的位置,
∴,,,,,,
∴,,,
∴点A、H、G三点共线,且,点H为AG中点,
设,则,,
在中,
,
即,
解得:,
∴,,
∵且点H为AG中点,
∴HP为中位线,
∴,,
在中,
,
,即,
∴,
∴,即,
解得:,
故答案为:.
【点睛】
题目主要考查矩形及图形折叠的性质,全等三角形的性质及平行线的判定,中位线的判定和性质,勾股定理等,理解题意,作出辅助线,综合运用这些知识点是解题关键.
4、9
【解析】
【分析】
根据n边形从一个顶点出发可引出(n-3)条对角线,可组成n-2个三角形,依此可得n的值.
【详解】
解:由题意得,n-2=7,
解得:n=9,
即这个多边形是九边形.
故答案为:9.
【点睛】
本题考查了多边形的对角线,求对角线条数时,直接代入边数n的值计算,而计算边数时,需利用方程思想,解方程求n.
5、4+2
【解析】
【分析】
取AD中点G,连接EG,F'G,BE,作BH⊥DC的延长线于点H,利用全等三角形的性质证明∠F'GA=60°,点F'的轨迹为射线GF',易得A、E关于GF'对称,推出AF'=EF',得到BF'+AF'=BF'+EF'≥BE,求出BE即可解决周长最小问题.
【详解】
解:取AD中点G,连接EG,F'G,BE,作BH⊥DC的延长线于点H,
∵四边形ABCD为菱形,
∴AB=AD,
∵∠BAD=120°,
∴∠CAD=60°,
∴△ACD为等边三角形,
又∵DE=DG,
∴△DEG也为等边三角形.
∴DE=GE,
∵∠DEG=60°=∠FEF',
∴∠DEG﹣∠FEG=∠FEF'﹣∠FEG,
即∠DEF=∠GEF',
由线段EF绕着点E顺时针旋转60°得到线段EF',
所以EF=EF'.
在△DEF和△GEF'中,
,
∴△DEF≌△GEF'(SAS).
∴∠EGF'=∠EDF=60°,
∴∠F'GA=180°﹣60°﹣60°=60°,
则点F'的运动轨迹为射线GF'.
观察图形,可得A,E关于GF'对称,
∴AF'=EF',
∴BF'+AF'=BF'+EF'≥BE,
在Rt△BCH中,
∵∠H=90°,BC=4,∠BCH=60°,
∴,
在Rt△BEH中,BE===2,
∴BF'+EF'≥2,
∴△ABF'的周长的最小值为AB+BF'+EF'=4+2,
故答案为:4+2.
【点睛】
本题考查了旋转变换,菱形的性质,解直角三角形,全等三角形的判定与性质,勾股定理,等边三角形等知识,解题关键在于学会添加常用辅助线,构造全等三角形解决问题,学会用转化的思想思考问题.
三、解答题
1、 (1)
(2)
(3)
(4)
2、 (1)-3,3,1,3,-3,-1
(2)①-2;②
(3)或
【解析】
【分析】
(1)分别以、、为对角线,利用平行四边形以及平移的性质可得点,,的坐标;
(2)①根据平行公理得,、在同一直线上,、、在同一直线上,可得是等腰三角形△的中位线,求出,即可得的值;
②由①求得的的值可得,的坐标,分别求出直线过点,时的值即可求解;
(3)由题意用表示出点,,的坐标,画出图形,求出直线与△交于点,时的值即可求解.
(1)
解:,,
,轴.
以为对角线时,
四边形是平行四边形,
,,
将向左平移2个单位长度可得,即;
以为对角线时,
四边形是平行四边形,
,,
将向右平移2个单位长度可得,即;
以为对角线时,
四边形是平行四边形,
对角线的中点与的中点重合,
的中点为,,
.
故答案为:,,;
(2)
解:①如图,若△是以为底的等腰三角形,
四边形,,是平行四边形,
,,,
、、在同一直线上,、、在同一直线上,,
是等腰三角形△的中位线,
,,
,,,
,
;
②由①得,
,.
当直线过点时,,解得:,
当直线过点时,,解得:,
的取值范围为;
(3)
解:如图,,,,
,.
连接、交于点,
四边形是平行四边形,
点、关于点对称,
,
直线与△有公共点,
当直线与△交于点,,解得:,
时,直线与△有公共点;
当直线与△交于点,,解得:,
时,直线与△有公共点;
综上,的取值范围为或.
【点睛】
本题考查了平行四边形的性质,坐标与图形性质,平移的性质,一次函数的性质,一次函数图象上点的坐标特征等知识,解题的关键是利用数形结合与分类讨论的思想进行求解.
3、 (1)(10,8)
(2)D(0,5),E(4,8)
【解析】
【分析】
(1)根据,,可得点的坐标;
(2)根据折叠的性质,可得AE=AO,OD=ED,根据勾股定理,可得EB的长,根据线段的和差,可得CE的长,可得E点坐标;再根据勾股定理,可得OD的长,可得D点坐标;
(1)
解:∵,,
∴点的坐标(10,8),
故答案为:(10,8);
(2)
解:依题意可知,折痕AD是四边形OAED的对称轴,
在Rt△ABE中,AE=AO=10,AB=OC=8,
由勾股定理,得BE= =6,
CE=BC-BE=10-6=4,E(4,8).
在Rt△DCE中,由勾股定理,得DC2+CE2=DE2,
又∵DE=OD,CD=8-OD,
(8-OD)2+42=OD2,
解得OD=5,D(0,5).
所以D(0,5),E(4,8);
【点睛】
本题主要考查了、矩形的性质、翻折变换、勾股定理等知识点,熟知折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等是解答此题的关键.
4、10cm
【解析】
【分析】
根据矩形性质得出∠ABC=90°,AC=BD,OA=OC=AC,OB=OD=BD,推出OA=OB,求出等边三角形AOB,求出OA=OB=AB=5,即可得出答案.
【详解】
解:∵∠BOC=120°,
∴∠AOB=180°﹣120°=60°,
∵四边形ABCD是矩形,
∴∠ABC=90°,AC=BD,OA=OC=AC,OB=OD=BD,
∴OA=OB,
∵∠AOB=60°,
∴△AOB是等边三角形,
∵AB=5cm,
∴OA=OB=AB=5cm,
∴AC=2AO=10cm,BD=AC=10cm.
【点睛】
本题考查了矩形的性质和等边三角形的性质和判定的应用,解此题的关键是求出OA、OB的长,题目比较典型,是一道比较好的题目.
5、 (1)理由见解析
(2),理由见解析
(3)
【解析】
【分析】
(1),,可知,进而可说明;
(2)如图1所示,连接并延长至点K,分别平分,则设,为的外角,,同理,
,得;又由(1)中证明可知,,进而可得到结果;
(3)如图2所示,过点C作,则,,可得,由(1)中证明可得,在中, ,即,进而可得到结果.
(1)
证明:
又
在和中
.
(2)
解:.
理由如下:如图1所示,连接并延长至点K
分别平分
则设
为的外角
同理可得
即
.
又由(1)中证明可知
由三角形内角和公式可得
即
.
(3)
解:当时,如图2所示,过点C作,则
,即
由(1)中证明可得
在中,根据三角形内角和定理有
即
即
即,解得:
故.
【点睛】
本题考查了全等三角形的判定与性质、三角形的外角性质、三角形内角和定理、平行线的性质、角平分线的性质等知识,连接并延长,利用三角形外角性质证得是解题的关键.
2021学年第二十二章 四边形综合与测试优秀课时训练: 这是一份2021学年第二十二章 四边形综合与测试优秀课时训练,共25页。
冀教版八年级下册第二十二章 四边形综合与测试精品课堂检测: 这是一份冀教版八年级下册第二十二章 四边形综合与测试精品课堂检测,共24页。试卷主要包含了六边形对角线的条数共有,如图,在正方形ABCD中,点E等内容,欢迎下载使用。
初中数学冀教版八年级下册第二十二章 四边形综合与测试精品同步训练题: 这是一份初中数学冀教版八年级下册第二十二章 四边形综合与测试精品同步训练题,共28页。