初中数学冀教版八年级下册第二十二章 四边形综合与测试优秀课时作业
展开
这是一份初中数学冀教版八年级下册第二十二章 四边形综合与测试优秀课时作业,共30页。
八年级数学下册第二十二章四边形定向练习 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、如图,为了测量一块不规则绿地B,C两点间的距离,可以在绿地的一侧选定一点A,然后测量出AB,AC的中点D,E,如果测量出D,E两点间的距离是8m,那么绿地B,C两点间的距离是( )A.4m B.8m C.16m D.20m2、如图,正方形ABCD的两条对角线AC,BD相交于点O,点E在BD上,且BE=AD,则∠ACE的度数为( )A.22.5° B.27.5° C.30° D.35°3、已知在平行四边形ABCD中,∠A=90°,如果添加一个条件,可使该四边形是正方形,那么这个条件可以是( )A.∠D=90° B.AB=CD C.AD=BC D.BC=CD4、小明想判断家里的门框是否为矩形,他应该( )A.测量三个角是否都是直角 B.测量对角线是否互相平分C.测量两组对边是否分别相等 D.测量一组对角是否是直角5、如图,在△ABC中,AB=3,AC=4,BC=5,△ABD,△ACE,△BCF都是等边三角形,下列结论中:①AB⊥AC;②四边形AEFD是平行四边形;③∠DFE=150°;④S四边形AEFD=8.错误的个数是( )A.1个 B.2个 C.3个 D.4个6、下面性质中,平行四边形不一定具备的是( )A.对角互补 B.邻角互补C.对角相等 D.对角线互相平分7、如图,在给定的正方形中,点从点出发,沿边方向向终点运动, 交于点,以,为邻边构造平行四边形,连接,则的度数的变化情况是( )A.一直减小 B.一直减小后增大 C.一直不变 D.先增大后减小8、如图,在正方形ABCD中,对角线AC与BD相交于点O,E为BC上一点,CE=6,F为DE的中点.若OF的长为1,则△CEF的周长为( )A.14 B.16 C.18 D.129、若菱形的周长为8,高为2,则菱形的面积为( )A.2 B.4 C.8 D.1610、如图,已知正方形的边长为4,是对角线上一点,于点,于点,连接,.给出下列结论:①;②四边形的周长为8;③;④的最小值为;⑤;⑥.其中正确结论有几个( )A.3 B.4 C.5 D.6第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、如图,在平行四边形 ABCD 中,∠D=100°,AC 为对角线,将△ACD 绕点 A 顺时针旋转一定的角度后得到△AEF,使点 D 的对应点 E 落在边 AB 上,若点 C 的对应点 F 落在边CB 的延长线上,则∠EFB 的度数为___.2、三角形的中位线______于三角形的第三边,并且等于第三边的______.数学表达式:如图,∵AD=BD,AE=EC,∴DE∥BC,且DE=BC.3、如图,正方形ABCD中,将边BC绕着点C旋转,当点B落在边AD的垂直平分线上的点E处时,∠AEC的度数为_______4、如图,四边形ABCD是平行四边形,BE平分∠ABC,与AD交于点E,BC=5,DE=2,则AB的长为 ___.5、平行四边形ABCD中,∠ABC的平分线把AD分成5和7两部分,则平行四边形ABCD的周长为__.三、解答题(5小题,每小题10分,共计50分)1、已知正多边形的内角和比外角和大720°,求该正多边形所有对角线的条数.2、如图,在四边形ABCD中,AB=AD,AD//BC(1)在图中,用尺规作线段BD的垂直平分线EF,分别交BD、BC于点E、F.(保留作图痕迹,不写作法)(2)连接DF,证明四边形ABFD为菱形.3、如图,已知正方形ABCD,点E在边BC上,连接AE.(1)尺规作图:作,使,点F是的边与线段AB的交点.(不写作法,保留作图痕迹);(2)探究:AE,DF的位置关系和数量关系,并说明理由.4、已知:线段m.求作:矩形ABCD,使矩形宽AB=m,对角线AC=m.5、已知在与中,,点在同一直线上,射线分别平分. (1)如图1,试说明的理由;(2)如图2,当交于点G时,设,求与的数量关系,并说明理由;(3)当时,求的度数. -参考答案-一、单选题1、C【解析】【分析】根据三角形中位线定理即可求出.【详解】解:中,、分别是、的中点,为三角形的中位线,,,故选:C.【点睛】本题考查的是三角形中位线定理的应用,解题的关键是掌握三角形的中位线等于第三边的一半.2、A【解析】【分析】利用正方形的性质证明∠DBC=45°和BE=BC,进而证明∠BEC=67.5°.【详解】解:∵四边形ABCD是正方形,∴BC=AD,∠DBC=45°,∵BE=AD,∴BE=BC,∴∠BEC=∠BCE=(180°﹣45°)÷2=67.5°,∵AC⊥BD,∴∠COE=90°,∴∠ACE=90°﹣∠BEC=90°﹣67.5°=22.5°,故选:A.【点睛】本题考查正方形的性质,以及等腰三角形的性质,掌握正方形的性质并加以利用是解决本题的关键.3、D【解析】略4、A【解析】【分析】根据矩形的判定方法解题.【详解】解:A、三个角都是直角的四边形是矩形,选项A符合题意;B、对角线互相平分的四边形是平行四边形,选项B不符合题意,C、两组对边分别相等的四边形是平行四边形,选项C不符合题意;D、一组对角是直角的四边形不是矩形,选项D不符合题意;故选:A.【点睛】本题考查矩形的判定方法,是重要考点,掌握相关知识是解题关键.5、A【解析】【分析】利用勾股定理逆定理证得△ABC是直角三角形,由此判断①;证明△ABC≌△DBF得到DF=AE,同理可证:△ABC≌△EFC,得到EF=AD,由此判断②;由②可判断③;过A作AG⊥DF于G,求出AG即可求出 S▱AEFD,判断④.【详解】解:∵AB=3,AC=4,32+42=52,∴AB2+AC2=BC2,∴△ABC是直角三角形,∠BAC=90°,∴AB⊥AC,故①正确;∵△ABD,△ACE都是等边三角形,∴∠DAB=∠EAC=60°,∴∠DAE=150°,∵△ABD和△FBC都是等边三角形,∴BD=BA,BF=BC,∴∠DBF=∠ABC,在△ABC与△DBF中,, ∴△ABC≌△DBF(SAS),∴AC=DF=AE=4,同理可证:△ABC≌△EFC(SAS),∴AB=EF=AD=3,∴四边形AEFD是平行四边形,故②正确;∴∠DFE=∠DAE=150°,故③正确;过A作AG⊥DF于G,如图所示:则∠AGD=90°,∵四边形AEFD是平行四边形,∴∠FDA=180°﹣∠DFE=180°﹣150°=30°,∴AG=AD=, ∴S▱AEFD=DF•AG=4×=6;故④错误;∴错误的个数是1个,故选:A..【点睛】此题考查了等边三角形的性质,勾股定理的逆定理,全等三角形的判定及性质,平行四边形的判定及性质,直角三角形的30度角的性质,熟练掌握各知识点是解题的关键.6、A【解析】【分析】直接利用平行四边形的性质:对角相等、对角线互相平分、对边平行且相等,进而分析得出即可.【详解】解:A、平行四边形对角不一定互补,故符合题意;B、平行四边形邻角互补正确,故不符合题意;C、平行四边形对角相等正确,故不符合题意.D、平行四边形的对角线互相平分正确,故不符合题意;故选A.【点睛】此题主要考查了平行四边形的性质,熟练掌握相关性质是解题关键.7、A【解析】【分析】根据题意,作交的延长线于,证明是的角平分线即可解决问题.【详解】解:作交的延长线于, ∵四边形 是正方形, ∴,, ∵, ∴,, ∴, ∴, ∴, ∵四边形是平行四边形, ∴,, ∵, , ∴, ∵,. ∴, ∴,, ∴, ∴, ∵,∴, ∴是的角平分线, ∴点的运动轨迹是的角平分线,∵,由图可知,点P从点D开始运动,所以一直减小,故选:A .【点睛】本题考查了正方形的性质、全等三角形的判定和性质、平行四边形的性质等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题.8、B【解析】【分析】根据中位线的性质及直角三角形斜边上中线的性质可得:,结合图形得出的周长为,再由中位线的性质得出,在中,利用勾股定理确定,即可得出结论.【详解】解:在正方形ABCD中,,,,∵F为DE的中点,O为BD的中点,∴OF为的中位线且CF为斜边上的中线,∴,∴的周长为,∵,∴,∵,∴,∴,在中,,,,∴,∴的周长为,故选:B.【点睛】题目主要考查正方形的性质,三角形中位线的性质,勾股定理,直角三角形斜边中线的性质等,理解题意,熟练掌握运用各个知识点是解题关键.9、B【解析】【分析】根据周长求出边长,利用菱形的面积公式即可求解.【详解】∵菱形的周长为8,∴边长=2,∴菱形的面积=2×2=4,故选:B.【点睛】此题考查菱形的性质,熟练掌握菱形的面积=底×高是解题的关键.10、D【解析】【分析】如图,过点作于点,连接,可说明四边形为矩形,,,是等腰直角三角形,;①中,可得为等腰直角三角形,进而求,由于四边形是平行四边形,,故可知;②,四边形为矩形,进而可求矩形的周长;③证明,由全等可知,进而可说明;④,当最小时,最小,即时,最小,计算即可;⑤在和中,勾股定理求得,将线段等量替换求解即可;⑥如图1,延长与交于点,证明,得,,,进而可说明.【详解】解:如图,过点作于点,连接,由题意知∴四边形为平行四边形∵∴四边形为矩形∴∵∴∵∴∴是等腰直角三角形∴①∵,∴为等腰直角三角形∴,∴∴四边形是平行四边形∴∴故①正确;②∵∴四边形为矩形∴四边形的周长故②正确;③四边形为矩形∵在和中∵∴∴∴故③正确;④∵当最小时,最小∴当时,即时,的最小值等于故④正确;⑤在和中,,∴故⑤正确;⑥如图1,延长与交于点 ∵在和中∵∴∴∵∴∴故⑥正确;综上,①②③④⑤⑥正确,故选:.【点睛】本题考查了正方形,矩形的判定与性质,勾股定理,等腰直角三角形,三角形全等.解题的关键在于对知识的灵活综合运用.二、填空题1、20°##20度【解析】【分析】根据平行四边形 ABCD 性质求出∠DAB=180°-∠D=80°,根据△ACD 绕点 A 顺时针旋转一定的角度后得到△AEF,得出AF=AC,∠FAE=∠CAD,∠AFE=∠ACD,利用等腰三角形性质求出∠AFC=∠ACF=,根据平行线性质∠DAC=∠ACF=50°,利用三角形内角和求出∠ACD=180°-∠D-∠CAD=180°-100°-50°=30°即可.【详解】解:在平行四边形 ABCD 中,∠D=100°,∴∠DAB=180°-∠D=80°,∵△ACD 绕点 A 顺时针旋转一定的角度后得到△AEF,∴AF=AC,∠FAE=∠CAD,∠AFE=∠ACD,∴∠FAC=∠FAE+∠BAC=∠CAD+∠BAC=∠BAD=80°∴∠AFC=∠ACF=∵AD∥BC,∴∠DAC=∠ACF=50°,∴∠ACD=180°-∠D-∠CAD=180°-100°-50°=30°,∴∠AFE=∠ACD=30°,∴∠EFB=∠AFC-∠AFE=50°-30°=20°,故答案为20°.【点睛】本题考查平行四边形的性质,图形旋转性质,等腰三角形性质,角的和差,三角形内角和,掌握平行四边形的性质,图形旋转性质,等腰三角形性质,角的和差,三角形内角和是解题关键.2、 平行 一半【解析】略3、或【解析】【分析】分两种情况分析:当点E在BC下方时记点E为点,点E在BC上方时记点E为点,连接,,根据垂直平分线的性质得,,由正方形的性质得,,由旋转得,,故,是等边三角形,,是等腰三角形,由等边三角形和等腰三角形的求角即可.【详解】如图,当点E在BC下方时记点E为点,连接,∵点落在边AD的垂直平分线,∴,∵四边形ABCD是正方形,∴,∵BC绕点C旋转得,∴,∴是等边三角形,是等腰三角形,∴,,∴,∴,当点E在BC上方时记点E为点,连接,∵点落在边AD的垂直平分线,∴,∵四边形ABCD是正方形,∴,,∵BC绕点C旋转得,∴,∴是等边三角形,是等腰三角形,∴,,∴,∴.故答案为:或.【点睛】本题考查正方形的性质、垂直平分线的性质、旋转的性质,以及等边三角形与等腰三角形的判定与性质,掌握相关知识点的应用是解题的关键.4、3【解析】【分析】根据平行四边形的性质可得,,结合图形,利用线段间的数量关系可得,由平行线及角平分线可得,,得出,根据等角对等边即可得出结果.【详解】解:∵四边形ABCD为平行四边形,∴,,∵,∴,∵,BE平分,∴,,∴,∴,故答案为:3.【点睛】题目主要考查平行四边形的性质,利用角平分线计算及平行线的性质,等角对等边求边长等,理解题意,结合图形,综合运用这些知识点是解题关键.5、34或38##38或34【解析】【分析】由平行四边形ABCD推出∠AEB=∠CBE,由已知得到∠ABE=∠CBE,推出AB=AE,分两种情况(1)当AE=5时,求出AB的长;(2)当AE=7时,求出AB的长,进一步求出平行四边形的周长.【详解】解:如图,∵四边形ABCD是平行四边形,∴AD=BC,AB=CD,AD∥BC,∴∠AEB=∠CBE,∵BE平分∠ABC, ∴∠ABE=∠CBE,∴∠ABE=∠AEB,∴AB=AE,(1)当AE=5时,AB=5,平行四边形ABCD的周长是2×(5+5+7)=34;(2)当AE=7时,AB=7,平行四边形ABCD的周长是2×(5+7+7)=38;故答案为:34或38.【点睛】本题主要考查了平行四边形的性质,等腰三角形的判定,三角形的角平分线等知识点,解此题的关键是求出AE=AB.用的数学思想是分类讨论思想.三、解答题1、20条【解析】【分析】多边形的内角和可以表示成(n-2)•180°,外角和是固定的360°,根据正多边形内角和与外角和的差等于720°,列方程求出正多边形的边数.然后根据n边形共有条对角线,得出此正多边形的所有对角线的条数.【详解】解:设此正多边形为正n边形.由题意得:,解得n=8,∴此正多边形所有的对角线条数为:=20.答:这个正多边形的所有对角线有20条.【点睛】此题考查多边形的边数与对角线条数,一元一次方程,解题关键在于掌握多边形内角和公式和外角和,以及对角线条数计算公式..2、 (1)见解析(2)见解析【解析】【分析】(1)直接利用线段垂直平分线的作法得出答案;(2)结合垂直平分线的性质得出△ADE≌△FBE,即可得出AE=EF,进而利用菱形的判定方法得出答案.(1)(1)如图:EF即为所求作(2)证明:如图,连接DF,∵AD//BC,∴∠ADE=∠EBF,∵AF垂直平分BD,∴BE=DE.在△ADE和△FBE中,,∴△ADE≌△FBE(ASA),∴AE=EF,∴BD与AF互相垂直且平分,∴四边形ABFD为菱形.【点睛】此题主要考查了菱形的判定以及线段垂直平分线的性质与作法,正确应用线段垂直平分线的性质是解题关键.3、 (1)见解析;(2),,见解析【解析】【分析】(1)根据题意作出即可;(2)证明即可得结论.(1)如图,即为所求.(2),.∵四边形ABCD是正方形,∴,.在和中, ∴(AAS),∴.∵,.∴,即.【点睛】本题考查了正方形的性质,三角形全等的性质与判定,作一个角等于已知角,掌握全等三角形的性质与判定是解题的关键.4、见详解【解析】【分析】先作m的垂直平分线,取m的一半为AB,然后以点A为圆心,以m长为半径画弧,交m的垂直平分线于C,连结AC,利用作一个角等于已知角,过A作BC的平行线AD,过C作AB的平行线CD,两线交于D即可.【详解】解:先作m的垂直平分线,取m的一半为AB,以点A为圆心,以m长为半径画弧,交m的垂直平分线于C,连结AC,过A作BC的平行线,与过C作AB的平行线交于D,则四边形ABCD为所求作矩形; ∵AD∥BC,CD∥AB,∴四边形ABCD为平行四边形,∵BC⊥AB,∴∠ABC=90°,∴四边形ABCD为矩形,∵AB=,AC=m,∴矩形的宽与对角线满足条件,∴四边形ABCD为所求作矩形.【点睛】本题考查矩形作图,线段垂直平分线,作线段等于已知线段,平行线作法,掌握矩形作图,线段垂直平分线,作线段等于已知线段,平行线作法是解题关键.5、 (1)理由见解析(2),理由见解析(3)【解析】【分析】(1),,可知,进而可说明;(2)如图1所示,连接并延长至点K,分别平分,则设,为的外角,,同理,,得;又由(1)中证明可知,,进而可得到结果;(3)如图2所示,过点C作,则,,可得,由(1)中证明可得,在中, ,即,进而可得到结果.(1)证明:又在和中.(2)解:.理由如下:如图1所示,连接并延长至点K分别平分则设为的外角同理可得即.又由(1)中证明可知由三角形内角和公式可得即.(3)解:当时,如图2所示,过点C作,则,即由(1)中证明可得在中,根据三角形内角和定理有即即即,解得:故.【点睛】本题考查了全等三角形的判定与性质、三角形的外角性质、三角形内角和定理、平行线的性质、角平分线的性质等知识,连接并延长,利用三角形外角性质证得是解题的关键.
相关试卷
这是一份初中数学冀教版八年级下册第二十二章 四边形综合与测试精品当堂检测题,共30页。
这是一份冀教版八年级下册第二十二章 四边形综合与测试精品综合训练题,共33页。试卷主要包含了下列说法不正确的是,六边形对角线的条数共有,在中,若,则的度数是等内容,欢迎下载使用。
这是一份初中数学冀教版八年级下册第二十二章 四边形综合与测试优秀当堂达标检测题,共29页。