初中数学冀教版八年级下册第二十二章 四边形综合与测试精品达标测试
展开八年级数学下册第二十二章四边形专题测试
考试时间:90分钟;命题人:数学教研组
考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)
一、单选题(10小题,每小题3分,共计30分)
1、如图,四边形中,,对角线,相交于点,于点,于点,连接,,若,则下列结论:
①;
②;
③四边形是平行四边形;
④图中共有四对全等三角形.
其中正确结论的个数是( )
A.4 B.3 C.2 D.1
2、如图,菱形的对角线、相交于点,,,为过点的一条直线,则图中阴影部分的面积为( )
A.4 B.6 C.8 D.12
3、如图,为了测量一块不规则绿地B,C两点间的距离,可以在绿地的一侧选定一点A,然后测量出AB,AC的中点D,E,如果测量出D,E两点间的距离是8m,那么绿地B,C两点间的距离是( )
A.4m B.8m C.16m D.20m
4、在平行四边形ABCD中,∠A ∶∠ B ∶∠ C ∶∠ D的值可以是( )
A.1∶2∶3∶4 B.1∶2∶2∶1 C.2∶2∶1∶1 D.1∶2∶1∶2
5、能够判断一个四边形是矩形的条件是( )
A.对角线相等 B.对角线垂直
C.对角线互相平分且相等 D.对角线垂直且相等
6、如图,平行四边形ABCD的对角线AC,BD相交于点O,下列结论错误的是( )
A.AO=CO B.AD∥BC C.AD=BC D.∠DAC=∠ACD
7、如图,正方形的边长为,对角线、相交于点.为上的一点,且,连接并延长交于点.过点作于点,交于点,则的长为( )
A. B. C. D.
8、菱形ABCD的边长为5,一条对角线长为6,则菱形面积为( )
A.20 B.24 C.30 D.48
9、下列多边形中,内角和与外角和相等的是( )
A. B. C. D.
10、如图,菱形ABCD的面积为24cm2,对角线BD长6cm,点O为BD的中点,过点A作AE⊥BC交CB的延长线于点E,连接OE,则线段OE的长度是( )
A.3cm B.4cm C.4.8cm D.5cm
第Ⅱ卷(非选择题 70分)
二、填空题(5小题,每小题4分,共计20分)
1、如图,在平面直角坐标系xOy中,菱形ABCD的顶点A,D分别在y轴的正半轴和负半轴上,顶点B在x轴的负半轴上,若OA=3OD,S菱形ABCD=16,则点C的坐标为______.
2、如图,在平行四边形ABCD中,
(1)若∠A=130°,则∠B=______ 、∠C=______ 、∠D=______.
(2)若∠A+ ∠C= 200°,则∠A=______ 、∠B=______;
(3)若∠A:∠B= 5:4,则∠C=______ 、∠D=______.
3、如图,正方形ABCD的边长为4,E是BC的中点,在对角线BD上有一点P,则PC+PE的最小值是_______.
4、三角形的中位线______于三角形的第三边,并且等于第三边的______.
数学表达式:如图,
∵AD=BD,AE=EC,
∴DE∥BC,且DE=BC.
5、如图,在中,,D为外一点,使,E为BD的中点若,则__________.
三、解答题(5小题,每小题10分,共计50分)
1、已知∠MON=90°,点A是射线ON上的一个定点,点B是射线OM上的一个动点,点C在线段OA的延长线上,且AC=OB.
(1)如图1,CDOB,CD=OA,连接AD,BD.
① ;
②若OA=2,OB=3,则BD= ;
(2)如图2,在射线OM上截取线段BE,使BE=OA,连接CE,当点B在射线OM上运动时,求∠ABO和∠OCE的数量关系;
(3)如图3,当E为OB中点时,平面内一动点F满足FA=OA,作等腰直角三角形FQC,且FQ=FC,当线段AQ取得最大值时,直接写出的值.
2、如图,在四边形ABCD中,AB=AD,AD//BC
(1)在图中,用尺规作线段BD的垂直平分线EF,分别交BD、BC于点E、F.(保留作图痕迹,不写作法)
(2)连接DF,证明四边形ABFD为菱形.
3、如图,矩形ABCD的对角线AC、BD相交于点O,AB=5cm,∠BOC=120°,求矩形对角线的长.
4、如图,在中,,,E、F分别为AB、CD边上两点,FB平分.
(1)如图1,若,,求CD的长;
(2)如图2,若G为EF上一点,且,求证:.
5、若直线分别交轴、轴于A、C两点,点P是该直线上在第一象限内的一点,PB⊥轴,B为垂足,且S△ABC= 6
(1)求点B和P的坐标;
(2)点D是直线AP上一点,△ABD是直角三角形,求点D坐标;
(3)请问坐标平面是否存在点Q,使得以Q、C、P、B为顶点四边形是平行四边形,若存在请直接写出点Q的坐标;若不存在,请说明理由.
-参考答案-
一、单选题
1、B
【解析】
【分析】
由DE=BF以及DF=BE,可证明Rt△DCF≌Rt△BAE,由FC=EA,以及双垂直可证,四边形CFAE是平行四边形由此可证明②③正确.
【详解】
解:,
,
在和中,
,
,
,(故①正确);
于点,于点,
,
,
四边形是平行四边形,
,(故②正确);
,
,
,
,
四边形是平行四边形,(故③正确);
由以上可得出:,,,
,,,等.(故④错误),
故正确的有3个,
故选:.
【点评】
此题主要考查了平行四边形的性质与判定以及全等三角形的判定与性质等知识,得出是解题关键.
2、B
【解析】
【分析】
根据菱形的性质可证出,可将阴影部分面积转化为的面积,根据菱形的面积公式计算即可.
【详解】
解:四边形为菱形,
,,,
,
,
∴,
∴,
∴
故选:.
【点睛】
此题考查了菱形的性质,菱形的面积公式,全等三角形的判定,将阴影部分的面积转化为的面积为解题关键.
3、C
【解析】
【分析】
根据三角形中位线定理即可求出.
【详解】
解:中,、分别是、的中点,
为三角形的中位线,
,
,
故选:C.
【点睛】
本题考查的是三角形中位线定理的应用,解题的关键是掌握三角形的中位线等于第三边的一半.
4、D
【解析】
略
5、C
【解析】
略
6、D
【解析】
【分析】
根据平行四边形的性质解答.
【详解】
解:∵四边形ABCD是平行四边形,
∴AO=OC,故A正确;
∴,故B正确;
∴AD=BC,故C正确;
故选:D.
【点睛】
此题考查了平行四边形的性质,熟记平行四边形的性质是解题的关键.
7、C
【解析】
【分析】
根据正方形的性质以及已知条件求得的长,进而证明,即可求得,勾股定理即可求得的长
【详解】
解:如图,设的交点为,
四边形是正方形
,,
,,
,,
在与中
在中,
故选C
【点睛】
本题考查了正方形的性质,勾股定理,全等三角形的性质与判定,掌握正方形的性质是解题的关键.
8、B
【解析】
【分析】
根据菱形的性质利用勾股定理求得另一条对角线,再根据菱形的面积等于两对角线乘积的一半求得菱形的面积.
【详解】
解:如图,当BD=6时,
∵四边形ABCD是菱形,
∴AC⊥BD,AO=CO,BO=DO=3,
∵AB=5,
∴AO==4,
∴AC=8,
∴菱形的面积是:6×8÷2=24,
故选:C.
【点睛】
本题主要考查菱形的面积公式,以及菱形的性质和勾股定理,关键是掌握菱形的面积等于两条对角线的积的一半.
9、B
【解析】
【分析】
根据多边形的内角和公式(n-2)•180°与多边形的外角和定理列式进行计算即可得解.
【详解】
解:设所求多边形的边数为n,根据题意得:
(n-2)•180°=360°,
解得n=4.
故选:B.
【点睛】
本题考查了多边形的内角和公式与外角和定理,熟记公式与定理是解题的关键.
10、B
【解析】
【分析】
由菱形的性质得出BD=6cm,由菱形的面积得出AC=8cm,再由直角三角形斜边上的中线等于斜边的一半即可得出结果.
【详解】
解:∵四边形ABCD是菱形,
∴BD⊥AC,
∵BD=6cm,S菱形ABCD═AC×BD=24cm2,
∴AC=8cm,
∵AE⊥BC,
∴∠AEC=90°,
∴OE=AC=4cm,
故选:B.
【点睛】
本题主要考查了菱形的性质、直角三角形斜边上的中线性质;熟练掌握菱形的性质是解题的关键.
二、填空题
1、(-2,-8)
【解析】
【分析】
由菱形的性质可得出,即,,再根据勾股定理可求出OB的长度.设,则,列等式,求出,则答案可解.
【详解】
,
四边形ABCD为菱形,
,,
即,,
,
.
设 则,
,即,
,
解得(舍去)
.
在轴上,,即轴,则轴,
.
【点睛】
本题考查了菱形的性质及勾股定理,根据菱形的性质结合勾股定理求出、、的长是解题的关键.
2、 50° 130° 50° 100° 80° 100° 80°
【解析】
略
3、
【解析】
【分析】
要求PE+PC的最小值,PE,PC不能直接求,可考虑通过作辅助线转化PE,PC的值,从而找出其最小值求解.
【详解】
解:如图,连接AE,PA,
∵四边形ABCD是正方形,BD为对角线,
∴点C关于BD的对称点为点A,
∴PE+PC=PE+AP,
根据两点之间线段最短可得AE就是AP+PE的最小值,
∵正方形ABCD的边长为4,E是BC边的中点,
∴BE=2,
∴AE=AB2+BE2=42+22=25,
故答案为:.
【点睛】
本题主要考查了正方形的性质和轴对称及勾股定理等知识的综合应用.根据已知得出两点之间线段最短可得AE就是AP+PE的最小值是解题关键.
4、 平行 一半
【解析】
略
5、##30度
【解析】
【分析】
延长BC、AD交于F,通过全等证明C是BF的中点,然后利用中位线的性质即可.
【详解】
解:延长BC、AD交于F,
在△ABC和△AFC中
,
∴△ABC≌△AFC(ASA),
∴BC=FC,
∴C为BF的中点,
∵E为BD的中点,
∴CE为△BDF的中位线,
∴CE//AF,
∴∠ACE=∠CAF,
∵∠ACB=90°,∠ABC=60°,
∴∠BAC=30°,
∴∠ACE=∠CAF=∠BAC=30°,
故答案为:30°.
【点睛】
本题考查了全等三角形的判定与性质、三角形中位线的定义与性质,以及平行线的性质,作出正确的辅助线是解题的关键.
三、解答题
1、 (1)△DCA;
(2)∠ABO+∠OCE=45°,理由见解析
(3)
【解析】
【分析】
(1)①由平行线的性质可得∠ACD=∠BOA=90°,再由OB=CA,OA=CD,即可利用SAS证明△AOB≌△DCA;②过点D作DR⊥BO交BO延长线于R,由①可知△AOB≌△DCA,得到CD=OA=2,AC=OB=3,再由OC⊥OB,DR⊥OB,CD∥OB,得到DR=OC=OA+AC=5(平行线间距离相等),同理可得OR=CD=3,即可利用勾股定理得到;
(2)如图所示,过点C作CW⊥AC,使得CW=OA,连接AW,BW,先证明△AOB≌△WCA得到AB=AW,∠ABO=∠WAC,然后推出∠ABW=∠AWB=45°,证明四边形BECW是平行四边形,得到BW∥CE,则∠WJC=∠BWA=45°,由三角形外角的性质得到∠WJC=∠WAC+∠JCA,则∠ABO+∠OCE=45°;
(3)如图3-1所示,连接AF,则,如图3-2所示,当A、F、Q三点共线时,AQ有最大值,由此求解即可.
(1)
解:①∵CD∥OB,
∴∠ACD=∠BOA=90°,
又∵OB=CA,OA=CD,
∴△AOB≌△DCA(SAS);
故答案为:△DCA;
②如图所示,过点D作DR⊥BO交BO延长线于R,
由①可知△AOB≌△DCA,
∴CD=OA=2,AC=OB=3,
∵OC⊥OB,DR⊥OB,CD∥OB,
∴DR=OC=OA+AC=5(平行线间距离相等),
同理可得OR=CD=3,
∴BR=OB+OR=5,
∴;
故答案为:;
(2)
解:∠ABO+∠OCE=45°,理由如下:
如图所示,过点C作CW⊥AC,使得CW=OA,连接AW,BW,
在△AOB和△WCA中,
,
∴△AOB≌△WCA(SAS),
∴AB=AW,∠ABO=∠WAC,
∵∠AOB=90°,
∴∠ABO+∠BAO=90°,
∴∠BAO+∠WAC=90°,
∴∠BAW=90°,
又∵AB=AW,
∴∠ABW=∠AWB=45°,
∵BE⊥OC,CW⊥OC,
∴BE∥CW,
又∵BE=OA=CW,
∴四边形BECW是平行四边形,
∴BW∥CE,
∴∠WJC=∠BWA=45°,
∵∠WJC=∠WAC+∠JCA,
∴∠ABO+∠OCE=45°;
(3)
解:如图3-1所示,连接AF,
∴,
∴如图3-2所示,当A、F、Q三点共线时,AQ有最大值,
∵E是OB的中点,BE=OA,
∴BE=OE=OA,
∴OB=AC=2OA,
∵△CFQ是等腰直角三角形,CF=QF,
∴∠CFQ=∠CFA=90°,
∴,
∴,
∴.
【点睛】
本题主要考查了全等三角形的性质与判定,勾股定理,平行四边形的性质与判定,平行线的性质与判定等等,熟知相关知识是解题的关键.
2、 (1)见解析
(2)见解析
【解析】
【分析】
(1)直接利用线段垂直平分线的作法得出答案;
(2)结合垂直平分线的性质得出△ADE≌△FBE,即可得出AE=EF,进而利用菱形的判定方法得出答案.
(1)
(1)如图:EF即为所求作
(2)
证明:如图,连接DF,
∵AD//BC,
∴∠ADE=∠EBF,
∵AF垂直平分BD,
∴BE=DE.
在△ADE和△FBE中,
,
∴△ADE≌△FBE(ASA),
∴AE=EF,
∴BD与AF互相垂直且平分,
∴四边形ABFD为菱形.
【点睛】
此题主要考查了菱形的判定以及线段垂直平分线的性质与作法,正确应用线段垂直平分线的性质是解题关键.
3、10cm
【解析】
【分析】
根据矩形性质得出∠ABC=90°,AC=BD,OA=OC=AC,OB=OD=BD,推出OA=OB,求出等边三角形AOB,求出OA=OB=AB=5,即可得出答案.
【详解】
解:∵∠BOC=120°,
∴∠AOB=180°﹣120°=60°,
∵四边形ABCD是矩形,
∴∠ABC=90°,AC=BD,OA=OC=AC,OB=OD=BD,
∴OA=OB,
∵∠AOB=60°,
∴△AOB是等边三角形,
∵AB=5cm,
∴OA=OB=AB=5cm,
∴AC=2AO=10cm,BD=AC=10cm.
【点睛】
本题考查了矩形的性质和等边三角形的性质和判定的应用,解此题的关键是求出OA、OB的长,题目比较典型,是一道比较好的题目.
4、 (1)7
(2)见解析
【解析】
【分析】
(1)根据平行四边形的性质,可得AB∥CD,AB=CD,可得∠EBF=∠CFB,再由∵FB平分,可得∠EFB=∠EBF,从而得到BE=EF=5,即可求解;
(2)再CF上截取FN=FG,可得,从而得到∠BGF=∠BNF,再由∠GBF=∠EFD,可得到∠BFD=∠BNC,再根据BC⊥BD,∠BCD=45°,可得BC=BD,从而证得△BDF≌△BCN,进而得到NC=FD,即可求证.
(1)
解:在中,AB∥CD,AB=CD,
∴∠EBF=∠CFB,
∵FB平分,
∴∠EFB=∠CFB,
∴∠EFB=∠EBF,
∴BE=EF=5,
∵AE=2,
∴CD=AB=AE+BE=7;
(2)
证明:如图,再CF上截取FN=FG,
∵,
∴ ,
∴∠BGF=∠BNF,
∵ ,∠BFG+∠BGF+∠GBF=180°,∠GBF=∠EFD,
∴∠BGF=∠BFN,
∴∠BFN=∠BNF,
∴∠BFD=∠BNC,
∵BC⊥BD,
∴∠CBD=90°,
∵∠BCD=45°,
∴∠BDC=∠BCD=45°,
∴BC=BD,
∴△BDF≌△BCN(AAS),
∴NC=FD,
∴CD=DF+FN+CN=2FD+FG,
∵AB=CD,
∴FG+2FD=AB.
【点睛】
本题主要考查了平行四边形的性质,全等三角形的判定和性质,等腰三角形的性质,熟练掌握平行四边形的性质,全等三角形的判定和性质,等腰三角形的性质是解题的关键.
5、 (1)B(2,0),P(2,3)
(2)(2,3)或(,)
(3)(0,5)或(0,-1)或(4,1)
【解析】
【分析】
(1)设B(x,0),则P(x,x+2),由S△ABC=6列方程求出x的值,即得到点B和点P的坐标;
(2)当点D与点P重合时,△ABD是直角三角形;当点D与点P不重合时,过点C作CE⊥AP,先求出直线CE的解析式,再由直线BD∥CE求出直线BD的解析式且与y=x+2联立方程组,求出点D的坐标;
(3)画出图形,根据平行四边形的性质分三种情况得出点Q坐标.
(1)
解:如图1,设B(x,0),则P(x,x+2),
对于y=x+2,当y=0时,由x+2=0,得,x=-4;当x=0时,y=2,
∴A(-4,0),C(0,2),
∵点P在第一象限,且S△ABC=6,
∴×2(x+4)=6,
解得x=2,
∴B(2,0),P(2,3).
(2)
如图1,点D与点P重合,此时∠ABD=∠ABP=90°,
∴△ABD是直角三角形,
此时D(2,3);
如图2,点D在线段AP上,∠ADB=90°,
此时△ABD是直角三角形,作CE⊥AP,交x轴于点E,
则∠ACE=∠ADB=90°,
∴BD∥CE,AC=,
设E(m,0),
由AE•OC=AC•CE=S△ACE,得AE•OC=AC•CE,
∴2(m+4)=CE,
∴CE=(m+4),
∵∠COE=90°,
∴OE2+OC2=CE2,
∴m2+22=(m+4)]2,
整理得,m2-2m+1=0,
解得,m1=m2=1,
∴E(1,0);
设直线CE的解析式为y=kx+2,则k+2=0,
解得,k=-2,
∴y=-2x+2;
设直线BD的解析式为y=-2x+n,则-2×2+n=0,
解得,n=4,
∴y=-2x+4,
由,得:,
∴D(,);
由图象可知,当点D在PA的延长线上,或点D在AP的延长线上,则△ABD不能是直角三角形,
综上所述,点D的坐标是(2,3)或(,);
(3)
存在.如图,
当四边形CQBP是平行四边形时,
此时,CQ=PB=3,
∴Q(0,-1);
当四边形CQ1PB是平行四边形时,
此时,CQ1=PB=3,
∴Q1(0,5);
当四边形CPQ2B是平行四边形时,
此时,CP∥BQ2且CB∥PQ2,
∴Q2(4,1);
综上所述,点Q的坐标为(0,5)或(0,-1)或(4,1).
【点睛】
此题重点考查一次函数的图象与性质、平行四边形的判定与性质、勾股定理等知识点,在解第(2)题、第(3)题时,应进行分类讨论,求出所有符合条件的结果,此题综合性较强,难度较大,属于考试压轴题.
2020-2021学年第二十二章 四边形综合与测试优秀课后作业题: 这是一份2020-2021学年第二十二章 四边形综合与测试优秀课后作业题,共30页。试卷主要包含了如图,菱形的对角线等内容,欢迎下载使用。
冀教版八年级下册第二十二章 四边形综合与测试精品练习: 这是一份冀教版八年级下册第二十二章 四边形综合与测试精品练习,共31页。试卷主要包含了下列关于的叙述,正确的是,在中,若,则的度数是,下列说法不正确的是等内容,欢迎下载使用。
2021学年第二十二章 四边形综合与测试精品习题: 这是一份2021学年第二十二章 四边形综合与测试精品习题,共31页。