2021学年第二十二章 四边形综合与测试精品达标测试
展开
这是一份2021学年第二十二章 四边形综合与测试精品达标测试,共29页。试卷主要包含了下列说法不正确的是等内容,欢迎下载使用。
八年级数学下册第二十二章四边形同步测试
考试时间:90分钟;命题人:数学教研组
考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)
一、单选题(10小题,每小题3分,共计30分)
1、如图,△ABC的周长为a,以它的各边的中点为顶点作△A1B1C1,再以△AB1C1各边的中点为顶点作△A2B2C2,再以△AB2C2各边的中点为顶点作△A3B3C3,…如此下去,则△AnBnCn的周长为( )
A.a B.a C.a D.a
2、一个多边形的每个内角均为150°,则这个多边形是( )
A.九边形 B.十边形 C.十一边形 D.十二边形
3、如图,E、F分别是正方形ABCD的边CD、BC上的点,且,AF、BE相交于点G,下列结论中正确的是( )
①;②;③;④.
A.①②③ B.①②④ C.①③④ D.②③④
4、如图①,在▱ABCD中,动点P从点B出发,沿折线B→C→D→B运动,设点P经过的路程为x,△ABP的面积为y,y是x的函数,函数的图象如图②所示,则图②中的a值为( )
A.3 B.4 C.14 D.18
5、矩形ABCD的对角线交于点O,∠AOD=120°,AO=3,则BC的长度是( )
A.3 B. C. D.6
6、如图,四边形中,,对角线,相交于点,于点,于点,连接,,若,则下列结论:
①;
②;
③四边形是平行四边形;
④图中共有四对全等三角形.
其中正确结论的个数是( )
A.4 B.3 C.2 D.1
7、如图,把一长方形纸片ABCD的一角沿AE折叠,点D的对应点落在∠BAC内部.若,且,则∠DAE的度数为( )
A.12° B.24° C.39° D.45°
8、如图,在给定的正方形中,点从点出发,沿边方向向终点运动, 交于点,以,为邻边构造平行四边形,连接,则的度数的变化情况是( )
A.一直减小 B.一直减小后增大 C.一直不变 D.先增大后减小
9、下列说法不正确的是( )
A.三角形的外角大于每一个与之不相邻的内角
B.四边形的内角和与外角和相等
C.等边三角形是轴对称图形,对称轴只有一条
D.全等三角形的周长相等,面积也相等
10、如图,在中,,于E,DE交AC于点F,M为AF的中点,连接DM,若,则的大小为( ).
A.112° B.108° C.104° D.98°
第Ⅱ卷(非选择题 70分)
二、填空题(5小题,每小题4分,共计20分)
1、如图,正方形的对角线、相交于点O,等边绕点O旋转,在旋转过程中,当时,的度数为____________.
2、如图,翠屏公园有一块长为12m,宽为6m的长方形草坪,绿化部门计划在草坪中间修两条宽度均为2m的石子路(两条石子路的任何地方的水平宽度都是2m),剩余阴影区域计划种植鲜花,则种植鲜花的面积为______m2.
3、如图,A、B、C均为一个正十边形的顶点,则∠ACB=_____°.
4、如图,点M,N分别是的边AB,AC的中点,若,,则______.
5、平行四边形的判定方法:
(1)两组对边分别______的四边形是平行四边形
(2)两组对边分别______的四边形是平行四边形
(3)两组对角分别______的四边形是平行四边形
(4)对角线______的四边形是平行四边形
(5)一组对边______的四边形是平行四边形
三、解答题(5小题,每小题10分,共计50分)
1、如图,将△ABC放在每个小正方形的边长为1的网格中,点A,点B,点C均落在格点上.
(1)计算AC2+BC2的值等于_____;
(2)请在如图所示的网格中,用无刻度的直尺,画出一个以AB为一边的矩形,使该矩形的面积等于AC2+BC2,并简要说明画图方法(不要求证明)_____.
2、如图,在中,,,E、F分别为AB、CD边上两点,FB平分.
(1)如图1,若,,求CD的长;
(2)如图2,若G为EF上一点,且,求证:.
3、已知:线段m.
求作:矩形ABCD,使矩形宽AB=m,对角线AC=m.
4、如图1,已知∠ACD是ABC的一个外角,我们容易证明∠ACD=∠A+∠B,即:三角形的一个外角等于与它不相邻的两个内角的和.那么,三角形的一个内角与它不相邻的两个外角的和之间存在怎样的数量关系呢?
(1)尝试探究:如图2,已知:∠DBC与∠ECB分别为ABC的两个外角,则∠DBC+∠ECB-∠A 180°.(横线上填<、=或>)
(2)初步应用:如图3,在ABC中,BP、CP分别平分外角∠DBC、∠ECB,∠P与∠A有何数量关系?请利用上面的结论直接写出答案:∠P= .
(3)解决问题:如图4,在四边形ABCD中,BP、CP分别平分外角∠EBC、∠FCB,请利用上面的结论探究∠P与∠BAD、∠CDA的数量关系.
5、如图,点D是ABC内一点,点E,F,G,H分别是AB,AC,CD,BD的中点.
(1)求证:四边形EFGH是平行四边形;
(2)如果∠BDC=90°,∠DBC=30°,,AD=6,求四边形EFGH的周长.
-参考答案-
一、单选题
1、A
【解析】
【分析】
根据三角形中位线的性质可知的周长的周长,的周长的周长,以此类推找出规律,写出代数式,再整理即可选择.
【详解】
解:∵以△ABC的各边的中点为顶点作,
∴的周长的周长.
∵以各边的中点为顶点作,
∴的周长的周长,
…,
∴的周长
故选:A.
【点睛】
本题主要考查三角形中位线的性质,根据三角形中位线的性质求出前2个三角形的面积总结出规律是解答本题的关键.
2、D
【解析】
【分析】
先求出多边形的外角度数,然后即可求出边数.
【详解】
解:∵多边形的每个内角都等于150°,
∴多边形的每个外角都等于180°-150°=30°,
∴边数n=360°÷30°=12,
故选:D.
【点睛】
本题考查多边形的内角和、外角来求多边形的边数,属于基础题,熟练掌握多边形中内角和定理公式是解决本类题的关键.
3、B
【解析】
【分析】
根据正方形的性质及全等三角形的判定定理和性质、垂直的判定依次进行判断即可得.
【详解】
解:∵四边形ABCD是正方形,
∴,,
在与中,
,
∴,
∴,①正确;
∵,
,
∴,
∴,
∴,②正确;
∵GF与BG的数量关系不清楚,
∴无法得AG与GE的数量关系,③错误;
∵,
∴,
∴,
即,④正确;
综上可得:①②④正确,
故选:B.
【点睛】
题目主要考查全等三角形的判定和性质,正方形的性质,垂直的判定等,理解题意,综合运用全等三角形全等的判定和性质是解题关键.
4、A
【解析】
【分析】
由图②知,BC=6,CD=14-6=8,BD=18-14=4,再通过解直角三角形,求出△CBD高,进而求解.
【详解】
解:由图②知,BC=6,CD=14-6=8,BD=18-14=4,
过点B作BH⊥DC于点H,
设CH=x,则DH=8-x,
则BH2=BC2-CH2=BD2-DH2,即:BH2=42-(8-x)2=62-x2,
解得:
则:,
则,
故选:A.
【点睛】
本题考查的是动点图象问题,此类问题关键是:弄清楚不同时间段,图象和图形的对应关系,进而求解.
5、C
【解析】
【分析】
画出图形,由条件可求得△AOB为等边三角形,则可求得AC的长,在Rt△ABC中,由勾股定理可求得BC的长.
【详解】
解:如下图所示:
∵四边形ABCD是矩形,
∴∠ABC=90°,OA=AC,OB=BD,AC=BD,
∴OA=OB,
∵∠AOD=120°,
∴∠AOB=60°,
∴△AOB是等边三角形,
∴OA=AB=2,
∴AC=2OA=4,
∴BC2=AC2-AB2=36-9=27,
∴BC=.
故选:D.
【点睛】
本题考查了矩形的性质、等边三角形的判定与性质以及勾股定理;熟练掌握矩形的性质,证明三角形是等边三角形是解决问题的关键.
6、B
【解析】
【分析】
由DE=BF以及DF=BE,可证明Rt△DCF≌Rt△BAE,由FC=EA,以及双垂直可证,四边形CFAE是平行四边形由此可证明②③正确.
【详解】
解:,
,
在和中,
,
,
,(故①正确);
于点,于点,
,
,
四边形是平行四边形,
,(故②正确);
,
,
,
,
四边形是平行四边形,(故③正确);
由以上可得出:,,,
,,,等.(故④错误),
故正确的有3个,
故选:.
【点评】
此题主要考查了平行四边形的性质与判定以及全等三角形的判定与性质等知识,得出是解题关键.
7、C
【解析】
【分析】
由折叠的性质得到,由长方形的性质得到,根据角的和差倍分得到,整理得 ,最后根据解题.
【详解】
解:折叠,
是矩形
故选:C.
【点睛】
本题考查角的计算、折叠性质、数形结合思想等知识,是重要考点,掌握相关知识是解题关键.
8、A
【解析】
【分析】
根据题意,作交的延长线于,证明是的角平分线即可解决问题.
【详解】
解:作交的延长线于,
∵四边形 是正方形,
∴,
,
∵,
∴,,
∴,
∴,
∴,
∵四边形是平行四边形,
∴,,
∵, ,
∴,
∵,.
∴,
∴,,
∴,
∴,
∵,
∴,
∴是的角平分线,
∴点的运动轨迹是的角平分线,
∵,
由图可知,点P从点D开始运动,所以一直减小,
故选:A .
【点睛】
本题考查了正方形的性质、全等三角形的判定和性质、平行四边形的性质等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题.
9、C
【解析】
【分析】
根据三角形外角的性质,四边形内角和定理和外角和定理,等边三角形的对称性,全等三角形的性质判断即可.
【详解】
∵三角形的外角大于每一个与之不相邻的内角,正确,
∴A不符合题意;
∵四边形的内角和与外角和都是360°,
∴四边形的内角和与外角和相等,正确,
∴B不符合题意;
∵等边三角形是轴对称图形,对称轴有三条,
∴等边三角形是轴对称图形,对称轴只有一条,错误,
∴C符合题意;
∵全等三角形的周长相等,面积也相等,正确,
∴D不符合题意;
故选C.
【点睛】
本题考查了三角形外角的性质,四边形的内角和,外角和定理,等边三角形的对称性,全等三角形的性质,准确相关知识是解题的关键.
10、C
【解析】
【分析】
根据平行四边形及垂直的性质可得为直角三角形,再由直角三角形中斜边上的中线等于斜边的一半可得,由等边对等角及三角形外角的性质得出,根据三角形内角和定理即可得出.
【详解】
解:∵四边形ABCD为平行四边形,
∴,
∵,
∴,
∴为直角三角形,
∵M为AF的中点,
∴,
∴,,
∵,
∴,
∴,
∴,
故选:C.
【点睛】
题目主要考查平行四边形的性质,直角三角形中斜边上的中线等于斜边的一半,等边对等角及三角形外角的性质和三角形内角和定理,理解题意,综合运用这些知识点是解题关键.
二、填空题
1、或
【解析】
【分析】
分两种情况:①根据正方形与等边三角形的性质得OC=OD,∠COD=90°,OE=OF,∠EOF=60°,可判断△ODE≌△OCF,则∠DOE=∠COF,于是可求∠DOF,即可得出答案;②同理可证得△ODE≌△OCF,所以∠DOE=∠COF,于是可求∠BOF,即可得答案.
【详解】
解:情况1,如下图:
∵四边形ABCD是正方形,
∴OD=OC,∠AOD=∠COD=90°,
∵△OEF是等边三角形,
∴OE=OF,∠EOF=60°,
在△ODE和△OCF中,
∴△ODE≌△OCF(SSS),
∴∠DOE=∠COF,
∴∠DOF=∠COE,
∴∠DOF=(∠COD-∠EOF)=×(90°﹣60°)=15°,
∴∠AOF=∠AOD+∠DOF=90°+15°=105°;
情况2,如下图:连接DE、CF,
∵四边形ABCD为正方形,
∴OC=OD,∠AOD=∠COB=90°,
∵△OEF为等边三角形,
∴OE=OF,∠EOF=60°,
在△ODE和△OCF中,
∴△ODE≌△OCF(SSS),
∴∠DOE=∠COF,
∴∠DOE=∠COF=(360°-∠COD-∠EOF)=×(360°﹣90°﹣60°)=105°,
∴∠BOF=∠COF-∠COB=105°-90°=15°,
∴∠AOF=∠AOB-∠BOF=90°-15°=75°,
故答案为:105°或75°.
【点睛】
本题考查了旋转的性质:旋转前后两图形全等;对应点到旋转中心的距离相等;对应点与旋转中心的连线段的夹角等于旋转角.也考查了正方形与等边三角形的性质,全等三角形的判定与性质,做题的关键是注意两种情况和证三角形全等.
2、48
【解析】
【分析】
利用长方形的面积减去石子路的面积,即可求解.
【详解】
解:根据题意得:种植鲜花的面积为 .
故答案为:48
【点睛】
本题主要考查了求平行四边形的面积,熟练掌握平行四边形的性质是解题的关键.
3、
【解析】
【分析】
根据正多边形外角和和内角和的性质,得、;根据四边形内角和的性质,计算得;根据五边形内角和的性质,计算得,再根据三角形外角的性质计算,即可得到答案.
【详解】
如图,延长BA
∵正十边形
∴,正十边形内角,即
根据题意,得四边形内角和为:,且
∴
∴
根据题意,得五边形内角和为:,且
∴
∴
故答案为:.
【点睛】
本题考查了正多边形、三角形外角的知识;解题的关键是熟练掌握正多边形外角和、正多边形内角和的性质,从而完成求解.
4、45°##45度
【解析】
【分析】
根据三角形中位线定理得出,进而利用平行线的性质解答即可.
【详解】
解:、分别是的边、的中点,
,
,
,,
,
,
故答案是:.
【点睛】
本题考查三角形中位线定理,解题的关键是根据三角形中位线定理得出.
5、 平行 相等 相等 互相平分 平行且相等
【解析】
略
三、解答题
1、 11 见解析
【解析】
【分析】
(1)直接利用勾股定理求出即可;
(2)首先分别以AC、BC、AB为一边作正方形ACED,正方形BCNM,正方形ABHF;进而得出答案.
【详解】
解:(1)AC2+BC2=()2+32=11;
故答案为:11;
(2)分别以AC、BC、AB为一边作正方形ACED,正方形BCNM,正方形ABHF;
延长DE交MN于点Q,连接QC,平移QC至AG,BP位置,直线GP分别交AF,BH于点T,S,则四边形ABST即为所求,如图,
【点睛】
本题考查了勾股定理,无刻度直尺作图,平行四边形与矩形的性质,掌握勾股定理以及特殊四边形的性质是解题的关键.
2、 (1)7
(2)见解析
【解析】
【分析】
(1)根据平行四边形的性质,可得AB∥CD,AB=CD,可得∠EBF=∠CFB,再由∵FB平分,可得∠EFB=∠EBF,从而得到BE=EF=5,即可求解;
(2)再CF上截取FN=FG,可得,从而得到∠BGF=∠BNF,再由∠GBF=∠EFD,可得到∠BFD=∠BNC,再根据BC⊥BD,∠BCD=45°,可得BC=BD,从而证得△BDF≌△BCN,进而得到NC=FD,即可求证.
(1)
解:在中,AB∥CD,AB=CD,
∴∠EBF=∠CFB,
∵FB平分,
∴∠EFB=∠CFB,
∴∠EFB=∠EBF,
∴BE=EF=5,
∵AE=2,
∴CD=AB=AE+BE=7;
(2)
证明:如图,再CF上截取FN=FG,
∵,
∴ ,
∴∠BGF=∠BNF,
∵ ,∠BFG+∠BGF+∠GBF=180°,∠GBF=∠EFD,
∴∠BGF=∠BFN,
∴∠BFN=∠BNF,
∴∠BFD=∠BNC,
∵BC⊥BD,
∴∠CBD=90°,
∵∠BCD=45°,
∴∠BDC=∠BCD=45°,
∴BC=BD,
∴△BDF≌△BCN(AAS),
∴NC=FD,
∴CD=DF+FN+CN=2FD+FG,
∵AB=CD,
∴FG+2FD=AB.
【点睛】
本题主要考查了平行四边形的性质,全等三角形的判定和性质,等腰三角形的性质,熟练掌握平行四边形的性质,全等三角形的判定和性质,等腰三角形的性质是解题的关键.
3、见详解
【解析】
【分析】
先作m的垂直平分线,取m的一半为AB,然后以点A为圆心,以m长为半径画弧,交m的垂直平分线于C,连结AC,利用作一个角等于已知角,过A作BC的平行线AD,过C作AB的平行线CD,两线交于D即可.
【详解】
解:先作m的垂直平分线,取m的一半为AB,
以点A为圆心,以m长为半径画弧,交m的垂直平分线于C,连结AC,
过A作BC的平行线,与过C作AB的平行线交于D,
则四边形ABCD为所求作矩形;
∵AD∥BC,CD∥AB,
∴四边形ABCD为平行四边形,
∵BC⊥AB,
∴∠ABC=90°,
∴四边形ABCD为矩形,
∵AB=,AC=m,
∴矩形的宽与对角线满足条件,
∴四边形ABCD为所求作矩形.
【点睛】
本题考查矩形作图,线段垂直平分线,作线段等于已知线段,平行线作法,掌握矩形作图,线段垂直平分线,作线段等于已知线段,平行线作法是解题关键.
4、 (1)=
(2)∠P=90°-∠A
(3)∠P=180°-∠BAD-∠CDA,探究见解析
【解析】
【分析】
(1)根据三角形外角的性质得:∠DBC=∠A+∠ACB,∠ECB=∠A+∠ABC,两式相加可得结论;
(2)根据角平分线的定义得:∠CBP=∠DBC,∠BCP=∠ECB,根据三角形内角和可得:∠P的式子,代入(1)中得的结论:∠DBC+∠ECB=180°+∠A,可得:∠P=90°−∠A;
(3)根据平角的定义得:∠EBC=180°-∠1,∠FCB=180°-∠2,由角平分线得:∠3=∠EBC=90°−∠1,∠4=∠FCB=90°−∠2,相加可得:∠3+∠4=180°−(∠1+∠2),再由四边形的内角和与三角形的内角和可得结论.
(1)
∠DBC+∠ECB-∠A=180°,
理由是:∵∠DBC=∠A+∠ACB,∠ECB=∠A+∠ABC,
∴∠DBC+∠ECB=2∠A+∠ACB+∠ABC=180°+∠A,
∴∠DBC+∠ECB-∠A=180°,
故答案为:=;
(2)
∠P=90°-∠A,
理由是:∵BP平分∠DBC,CP平分∠ECB,
∴∠CBP=∠DBC,∠BCP=∠ECB,
∵△BPC中,∠P=180°-∠CBP-∠BCP=180°-(∠DBC+∠ECB),
∵∠DBC+∠ECB=180°+∠A,
∴∠P=180°-(180°+∠A)=90°-∠A.
故答案为:∠P=90°-∠A,
(3)
∠P=180°-∠BAD-∠CDA,
理由是:如图,
∵∠EBC=180°-∠1,∠FCB=180°-∠2,
∵BP平分∠EBC,CP平分∠FCB,
∴∠3=∠EBC=90°-∠1,∠4=∠FCB=90°-∠2,
∴∠3+∠4=180°-(∠1+∠2),
∵四边形ABCD中,∠1+∠2=360°-(∠BAD+∠CDA),
又∵△PBC中,∠P=180°-(∠3+∠4)=(∠1+∠2),
∴∠P=×[360°-(∠BAD+∠CDA)]=180°-(∠BAD+∠CDA)=180°-∠BAD-∠CDA.
【点睛】
本题是四边形和三角形的综合问题,考查了三角形和四边形的内角和定理、三角形外角的性质、角平分线的定义等知识,熟练掌握三角形外角的性质是关键.
5、 (1)见解析
(2)12
【解析】
【分析】
(1)利用三角形的中位线定理得出EH=FG=AD,EF=GH=BC,即可得出结论;
(2)根据含30度角的直角三角形的性质,求得,由(1)得出四边形EFGH的周长=EH+GH+FG+EF=AD+BC,即可得出结果.
(1)
证明:∵点E,F,G,H分别是AB,AC,CD,BD的中点.
∴EH=FG=AD,BC,
∴四边形EFGH是平行四边形;
(2)
∵∠BDC=90°,∠DBC=30°,
∴BC=2CD=4.
由(1)得:四边形EFGH的周长=EH+GH+FG+EF=AD+BC,
又∵AD=6,
∴四边形EFGH的周长=AD+BC=6+8=12.
【点睛】
本题考查了平行四边形的判定与性质,三角形的中位线定理,含30度角的直角三角形的性质,熟记三角形的中位线平行于第三边并且等于第三边的一半是解题的关键.
相关试卷
这是一份2020-2021学年第二十二章 四边形综合与测试精品课时作业,共25页。试卷主要包含了下列命题错误的是等内容,欢迎下载使用。
这是一份冀教版八年级下册第二十二章 四边形综合与测试精品当堂检测题,共38页。试卷主要包含了如图,E,如图,已知矩形ABCD中,R等内容,欢迎下载使用。
这是一份初中数学冀教版八年级下册第二十二章 四边形综合与测试精品精练,共32页。试卷主要包含了六边形对角线的条数共有,下列说法不正确的是等内容,欢迎下载使用。