冀教版八年级下册第二十二章 四边形综合与测试精品同步练习题
展开
这是一份冀教版八年级下册第二十二章 四边形综合与测试精品同步练习题,共32页。
八年级数学下册第二十二章四边形专项练习
考试时间:90分钟;命题人:数学教研组
考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)
一、单选题(10小题,每小题3分,共计30分)
1、如图,△ABC的周长为a,以它的各边的中点为顶点作△A1B1C1,再以△AB1C1各边的中点为顶点作△A2B2C2,再以△AB2C2各边的中点为顶点作△A3B3C3,…如此下去,则△AnBnCn的周长为( )
A.a B.a C.a D.a
2、如图,四边形ABCD是菱形,对角线AC,BD交于点O,E是边AD的中点,过点E作EF⊥BD,EG⊥AC,点F,G为垂足,若AC=10,BD=24,则FG的长为( )
A. B.8 C. D.
3、如图,菱形ABCD的对角线AC和BD相交于点O,,,E是OB的中点,P是CD的中点,连接PE,则线段PE的长为( )
A. B. C. D.
4、如图,菱形OABC的边OA在平面直角坐标系中的x轴上,,,则点C的坐标为( )
A. B. C. D.
5、如图,已知正方形的边长为4,是对角线上一点,于点,于点,连接,.给出下列结论:①;②四边形的周长为8;③;④的最小值为;⑤;⑥.其中正确结论有几个( )
A.3 B.4 C.5 D.6
6、如图,在边长为的正方形ABCD中,点E是对角线AC上一点,且于点F,连接DE,当时,( )
A.1 B. C. D.
7、如图.在长方形纸片ABCD中,AB=12,AD=20,所示,折叠纸片,使点A落在BC边上的A′处,折痕为PQ,当点A′在BC边上移动时,折痕的端点P、Q也随之移动.点P,Q分别在边AB、AD上移动,则点A′在BC边上可移动的最大距离为( )
A.8 B.10 C.12 D.16
8、如图,四边形ABCD是平行四边形,对角线AC与BD交于点O,若,,则的度数为( )
A.157° B.147° C.137° D.127°
9、如图,平行四边形ABCD的对角线AC,BD相交于点O,下列结论错误的是( )
A.AO=CO B.AD∥BC C.AD=BC D.∠DAC=∠ACD
10、如图,在平面直角坐标系中,矩形OABC的点A和点C分别落在x轴和y轴正半轴上,AO=4,直线l:y=3x+2经过点C,将直线l向下平移m个单位,设直线可将矩形OABC的面积平分,则m的值为( )
A.7 B.6 C.4 D.8
第Ⅱ卷(非选择题 70分)
二、填空题(5小题,每小题4分,共计20分)
1、如图,已知矩形ABCD中,AD=3,AB=5,E是边DC上一点,将ADE绕点A顺时针旋转得到,使得点D的对应点落在AE上,如果的延长线恰好经过点B,那么DE的长度等于_____.
2、如图,正方形ABCD中,E是BC边上的一点,连接AE,将AB边沿AE折叠到AF.延长EF交DC于G,点G恰为CD边中点,连接AG,CF,AC.若AB=6,则△AFC的面积为_______.
3、如图,在菱形ABCD中,点M、N分别交于AB、CD上,AM=CN,MN与AC交于点O,连接BO.若∠OBC=62°,则∠DAC为____°.
4、将矩形纸片ABCD(AB<BC)沿过点B的直线折叠,使点A落在BC边上的点F处,折痕为BE(如图1);再沿过点E的直线折叠,使点D落在BE上的点D'处,折痕为EG(如图2):再展开纸片(如图3),则图3中∠FEG的大小是__.
5、过某个多边形一个顶点的所有对角线,将此多边形分成7个三角形,则此多边形的边数______.
三、解答题(5小题,每小题10分,共计50分)
1、已知在与中,,点在同一直线上,射线分别平分.
(1)如图1,试说明的理由;
(2)如图2,当交于点G时,设,求与的数量关系,并说明理由;
(3)当时,求的度数.
2、如图,在Rt△ABC中,∠ABC=90°,∠C=30°,AC=12cm,点E从点A出发沿AB以每秒1cm的速度向点B运动,同时点D从点C出发沿CA以每秒2cm的速度向点A运动,运动时间为t秒(0<t<6),过点D作DF⊥BC于点F.
(1)试用含t的式子表示AE、AD、DF的长;
(2)如图①,连接EF,求证四边形AEFD是平行四边形;
(3)如图②,连接DE,当t为何值时,四边形EBFD是矩形?并说明理由.
3、如图,是一张放在平面直角坐标系中的长方形纸片,为原点,点在轴的正半轴上,点在轴的正半轴上,,,在边上取一点,将纸片沿翻折,使点落在边上的点处.
(1)直接写出点的坐标____________________;
(2)求、两点的坐标.
4、如图,在平行四边形中,、分别是边、上的点,且,,求证:四边形是矩形
5、如图,点D是ABC内一点,点E,F,G,H分别是AB,AC,CD,BD的中点.
(1)求证:四边形EFGH是平行四边形;
(2)如果∠BDC=90°,∠DBC=30°,,AD=6,求四边形EFGH的周长.
-参考答案-
一、单选题
1、A
【解析】
【分析】
根据三角形中位线的性质可知的周长的周长,的周长的周长,以此类推找出规律,写出代数式,再整理即可选择.
【详解】
解:∵以△ABC的各边的中点为顶点作,
∴的周长的周长.
∵以各边的中点为顶点作,
∴的周长的周长,
…,
∴的周长
故选:A.
【点睛】
本题主要考查三角形中位线的性质,根据三角形中位线的性质求出前2个三角形的面积总结出规律是解答本题的关键.
2、A
【解析】
【分析】
由菱形的性质得出OA=OC=5,OB=OD=12,AC⊥BD,根据勾股定理求出AD=13,由直角三角形斜边上的中线等于斜边的一半求出OE=6.5,证出四边形EFOG是矩形,得到EO=GF即可得出答案.
【详解】
解:连接OE,
∵四边形ABCD是菱形,
∴OA=OC=5,OB=OD=12,AC⊥BD,
在Rt△AOD中,AD==13,
又∵E是边AD的中点,
∴OE=AD=×13=6.5,
∵EF⊥BD,EG⊥AC,AC⊥BD,
∴∠EFO=90°,∠EGO=90°,∠GOF=90°,
∴四边形EFOG为矩形,
∴FG=OE=6.5.
故选:A.
【点睛】
本题考查了菱形的性质、矩形的判定与性质、直角三角形斜边上中线定理等知识;熟练掌握菱形的性质和矩形的性质是解题的关键.
3、A
【解析】
【分析】
取OD的中点H,连接HP,由菱形的性质可得AC⊥BD,AO=CO=4,OB=OD=6,由三角形中位线定理可得,,可得EH=6,,由勾股定理可求PE的长.
【详解】
解:如图,取OD的中点H,连接HP
∵四边形ABCD是菱形
∴AC⊥BD,AO=CO=4,OB=OD=6
∵点H是OD中点,点E是OB的中点,点P是CD的中点
∴OH=3,OE=3,,
∴EH=6,
在中,由勾股定理可得:
∴
故选:A
【点睛】
本题考查了菱形的性质,三角形中位线定理,勾股定理,添加恰当辅助线构造直角三角形是解题的关键.
4、A
【解析】
【分析】
如图:过C作CE⊥OA,垂足为E,然后求得∠OCE=30°,再根据含30°角直角三角形的性质求得OE,最后运用勾股定理求得CE即可解答.
【详解】
解:如图:过C作CE⊥OA,垂足为E,
∵菱形OABC,
∴OC=OA=4
∵,
∴∠OCE=30°
∵OC=4
∴OE=2
∴CE=
∴点C的坐标为.
故选A.
【点睛】
本题主要考查了菱形的性质、含30°直角三角形的性质、勾股定理等知识点,作出辅助线、求出OE、CE的长度是解答本题的关键.
5、D
【解析】
【分析】
如图,过点作于点,连接,可说明四边形为矩形,,,是等腰直角三角形,;①中,可得为等腰直角三角形,进而求,由于四边形是平行四边形,,故可知;②,四边形为矩形,进而可求矩形的周长;③证明,由全等可知,进而可说明;④,当最小时,最小,即时,最小,计算即可;⑤在和中,勾股定理求得,将线段等量替换求解即可;⑥如图1,延长与交于点,证明,得,,,进而可说明.
【详解】
解:如图,过点作于点,连接,
由题意知
∴四边形为平行四边形
∵
∴四边形为矩形
∴
∵
∴
∵
∴
∴是等腰直角三角形
∴
①∵,
∴为等腰直角三角形
∴
,
∴
∴四边形是平行四边形
∴
∴
故①正确;
②∵
∴四边形为矩形
∴四边形的周长
故②正确;
③四边形为矩形
∵在和中
∵
∴
∴
∴
故③正确;
④∵
当最小时,最小
∴当时,即时,的最小值等于
故④正确;
⑤在和中,,
∴
故⑤正确;
⑥如图1,延长与交于点
∵在和中
∵
∴
∴
∵
∴
∴
故⑥正确;
综上,①②③④⑤⑥正确,
故选:.
【点睛】
本题考查了正方形,矩形的判定与性质,勾股定理,等腰直角三角形,三角形全等.解题的关键在于对知识的灵活综合运用.
6、C
【解析】
【分析】
证明,则,计算的长,得,证明是等腰直角三角形,可得的长.
【详解】
解:四边形是正方形,
,,,
,
,
,
,
,
,
,
,
,
是等腰直角三角形,
,
故选:C.
【点睛】
本题考查正方形的性质,勾股定理,等腰直角三角形,三角形的外角的性质等知识,解题的关键是在正方形中学会利用等腰直角三角形的性质解决问题,属于中考常考题型.
7、A
【解析】
【分析】
根据翻折的性质,可得BA′与AP的关系,根据线段的和差,可得A′C,根据勾股定理,可得A′C,根据线段的和差,可得答案.
【详解】
解:①在长方形纸片ABCD中,AB=12,AD=20,
∴BC=AD=20,
当p与B重合时,BA′=BA=12,
CA′=BC-BA′=20-12=8,
②当Q与D重合时,
由折叠得A′D=AD=20,
由勾股定理,得
CA′==16,
CA′最远是16,CA′最近是8,点A′在BC边上可移动的最大距离为16-8=8,
故选:A.
【点睛】
本题考查了矩形的性质,翻折变换,利用了翻折的性质,勾股定理,分类讨论是解题关键.
8、C
【解析】
【分析】
根据平行四边形的性质推出AO=AB,求出∠AOB的度数,即可得到的度数.
【详解】
解:∵四边形ABCD是平行四边形,
∴AC=2AO,
∵,
∴AO=AB,
∵,
∴,
∴=,
故选:C.
【点睛】
此题考查了平行四边形的性质,三角形的内角和,利用邻补角求角度,正确掌握平行四边形的性质是解题的关键.
9、D
【解析】
【分析】
根据平行四边形的性质解答.
【详解】
解:∵四边形ABCD是平行四边形,
∴AO=OC,故A正确;
∴,故B正确;
∴AD=BC,故C正确;
故选:D.
【点睛】
此题考查了平行四边形的性质,熟记平行四边形的性质是解题的关键.
10、A
【解析】
【分析】
如图所示,连接AC,OB交于点D,先求出C和A的坐标,然后根据矩形的性质得到D是AC的中点,从而求出D点坐标为(2,1),再由当直线经过点D时,可将矩形OABC的面积平分,进行求解即可.
【详解】
解:如图所示,连接AC,OB交于点D,
∵C是直线与y轴的交点,
∴点C的坐标为(0,2),
∵OA=4,
∴A点坐标为(4,0),
∵四边形OABC是矩形,
∴D是AC的中点,
∴D点坐标为(2,1),
当直线经过点D时,可将矩形OABC的面积平分,
由题意得平移后的直线解析式为,
∴,
∴,
故选A.
【点睛】
本题主要考查了一次函数与几何综合,一次函数的平移,矩形的性质,解题的关键在于能够熟知过矩形中心的直线平分矩形面积.
二、填空题
1、
【解析】
【分析】
如图,连接BE、BE′,根据矩形的性质和旋转变换的性质可得:AD′=AD=3,∠AD′E=∠D=90°,利用勾股定理可得BD′=4,再运用等面积法可得:AB•AD=AE•BD′,求出AE=,再运用勾股定理即可求得答案.
【详解】
解:如图,连接BE、BE′,
∵矩形ABCD中,AD=3,AB=5,
∴∠D=90°,
由旋转知,△AD′E′≌△ADE,
∴AD′=AD=3,∠AD′E=∠D=90°,
∵D′E′的延长线恰好经过点B,
∴∠AD′B=90°,
在Rt△ABD′中,BD′===4,
∵S△ABE=AB•AD=AE•BD′,
∴AE===,
在Rt△ADE中,DE===,
故答案为:.
【点睛】
本题考查矩形的性质、旋转性质、勾股定理、三角形的面积,熟练掌握矩形性质和旋转性质,会利用等面积法求解是解答的关键.
2、3.6##
【解析】
【分析】
首先通过HL证明Rt△ABE≌Rt△AFB,得BE=EF,同理可得:DG=FG,设BE=x,则CE=6﹣x,EG=3+x,在Rt△CEG中,利用勾股定理列方程求出BE=2,S△AFC=S△AEC﹣S△AEF﹣S△EFC代入计算即可.
【详解】
解:∵四边形ABCD是正方形,
∴AB=AD,∠B=∠D=90°,
∵将AB边沿AE折叠到AF,
∴AB=AF,∠B=∠AFB=90°,
在Rt△ABE和Rt△AFB中,
,
∴Rt△ABE≌Rt△AFB(HL),
∴BE=EF,
同理可得:DG=FG,
∵点G恰为CD边中点,
∴DG=FG=3,
设BE=x,则CE=6﹣x,EG=3+x,
在Rt△CEG中,由勾股定理得:
(x+3)2=32+(6﹣x)2,
解得x=2,
∴BE=EF=2,CE=4,
∴S△CEG=×4×3=6,
∵EF∶FG=2∶3,
∴S△EFC=×6=,
∴S△AFC=S△AEC﹣S△AEF﹣S△EFC
=×4×6﹣×2×6﹣
=12﹣6﹣
=3.6.
故答案为:3.6.
【点睛】
本题考查了三角形全等的性质与判定,勾股定理,正方形的性质,根据勾股定理求得BE的长是解题的关键.
3、28
【解析】
【分析】
由全等三角形的性质可证△AOM≌△CON,可得AO=CO,由等腰三角形的性质可得BO⊥AC,即可求解.
【详解】
解:∵四边形ABCD是菱形,
∴AB//CD,AB=BC,BC//AD,
∴∠MAO=∠NCO,∠BCA=∠CAD.
在△AOM和△CON中,
,
∴△AOM≌△CON(AAS),
∴AO=CO,
又∵AB=BC,
∴BO⊥AC,
∴∠BCO=90°﹣∠OBC=28°=∠DAC.
故答案为:28.
【点睛】
本题考查了菱形的性质,等腰三角形的性质,全等三角形的判定和性质,掌握菱形的性质是本题的关键.
4、22.5°
【解析】
【分析】
根据折叠的性质可知,∠A=∠EFB=90°,AB=BF,以及纸片ABCD为矩形可得,∠AEF为直角,进而可以判断四边形ABFE为正方形,进而通过∠AEB,∠BEG的角度计算出∠FEG的大小.
【详解】
解:由折叠可知△AEB≌△FEB,
∴∠A=∠EFB=90°,AB=BF,
∵纸片ABCD为矩形,
∴AE∥BF,
∴∠AEF=180°-∠BFE=90°,
∵AB=BF,∠A=∠AEF=∠EFB=90°,
∴四边形ABFE为正方形,
∴∠AEB=45°,
∴∠BED=180°-45°=135°,
∴∠BEG=135°÷2=67.5°,
∴∠FEG=67.5°-45°=22.5°.
【点睛】
本题考查折叠的性质,矩形的性质,正方形的判定与性质,以及平行的相关性质,能够将正方形与矩形的性质相结合是解决本题的关键.
5、9
【解析】
【分析】
根据n边形从一个顶点出发可引出(n-3)条对角线,可组成n-2个三角形,依此可得n的值.
【详解】
解:由题意得,n-2=7,
解得:n=9,
即这个多边形是九边形.
故答案为:9.
【点睛】
本题考查了多边形的对角线,求对角线条数时,直接代入边数n的值计算,而计算边数时,需利用方程思想,解方程求n.
三、解答题
1、 (1)理由见解析
(2),理由见解析
(3)
【解析】
【分析】
(1),,可知,进而可说明;
(2)如图1所示,连接并延长至点K,分别平分,则设,为的外角,,同理,
,得;又由(1)中证明可知,,进而可得到结果;
(3)如图2所示,过点C作,则,,可得,由(1)中证明可得,在中, ,即,进而可得到结果.
(1)
证明:
又
在和中
.
(2)
解:.
理由如下:如图1所示,连接并延长至点K
分别平分
则设
为的外角
同理可得
即
.
又由(1)中证明可知
由三角形内角和公式可得
即
.
(3)
解:当时,如图2所示,过点C作,则
,即
由(1)中证明可得
在中,根据三角形内角和定理有
即
即
即,解得:
故.
【点睛】
本题考查了全等三角形的判定与性质、三角形的外角性质、三角形内角和定理、平行线的性质、角平分线的性质等知识,连接并延长,利用三角形外角性质证得是解题的关键.
2、 (1)AE=t,AD=12﹣2t,DF=t
(2)见解析
(3)3,理由见解析
【解析】
【分析】
(1)根据题意用含t的式子表示AE、CD,结合图形表示出AD,根据直角三角形的性质表示出DF;
(2)根据对边平行且相等的四边形是平行四边形证明;
(3)根据矩形的定义列出方程,解方程即可.
(1)
解:由题意得,AE=t,CD=2t,
则AD=AC﹣CD=12﹣2t,
∵DF⊥BC,∠C=30°,
∴DF=CD=t;
(2)
解:∵∠ABC=90°,DF⊥BC,
∴,
∵AE=t,DF=t,
∴AE=DF,
∴四边形AEFD是平行四边形;
(3)
解:当t=3时,四边形EBFD是矩形,
理由如下:∵∠ABC=90°,∠C=30°,
∴AB=AC=6cm,
∵,
∴BE=DF时,四边形EBFD是平行四边形,即6﹣t=t,
解得,t=3,
∵∠ABC=90°,
∴四边形EBFD是矩形,
∴t=3时,四边形EBFD是矩形.
【点睛】
此题考查了30度角的性质,平行四边形的判定及性质,矩形的定义,一元一次方程,三角形与动点问题,熟练掌握四边形的知识并综合应用是解题的关键.
3、 (1)(10,8)
(2)D(0,5),E(4,8)
【解析】
【分析】
(1)根据,,可得点的坐标;
(2)根据折叠的性质,可得AE=AO,OD=ED,根据勾股定理,可得EB的长,根据线段的和差,可得CE的长,可得E点坐标;再根据勾股定理,可得OD的长,可得D点坐标;
(1)
解:∵,,
∴点的坐标(10,8),
故答案为:(10,8);
(2)
解:依题意可知,折痕AD是四边形OAED的对称轴,
在Rt△ABE中,AE=AO=10,AB=OC=8,
由勾股定理,得BE= =6,
CE=BC-BE=10-6=4,E(4,8).
在Rt△DCE中,由勾股定理,得DC2+CE2=DE2,
又∵DE=OD,CD=8-OD,
(8-OD)2+42=OD2,
解得OD=5,D(0,5).
所以D(0,5),E(4,8);
【点睛】
本题主要考查了、矩形的性质、翻折变换、勾股定理等知识点,熟知折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等是解答此题的关键.
4、证明见解析
【解析】
【分析】
平行四边形,可知;由于 ,可得,,知四边形为平行四边形,由可知四边形是矩形.
【详解】
证明:∵四边形 是平行四边形
∴
∵
∴
∵
∴四边形为平行四边形
又∵
∴四边形是矩形.
【点睛】
本题考查了平行四边形的性质与判定,矩形的判定等知识.解题的关键在于灵活掌握矩形的判定.
5、 (1)见解析
(2)12
【解析】
【分析】
(1)利用三角形的中位线定理得出EH=FG=AD,EF=GH=BC,即可得出结论;
(2)根据含30度角的直角三角形的性质,求得,由(1)得出四边形EFGH的周长=EH+GH+FG+EF=AD+BC,即可得出结果.
(1)
证明:∵点E,F,G,H分别是AB,AC,CD,BD的中点.
∴EH=FG=AD,BC,
∴四边形EFGH是平行四边形;
(2)
∵∠BDC=90°,∠DBC=30°,
∴BC=2CD=4.
由(1)得:四边形EFGH的周长=EH+GH+FG+EF=AD+BC,
又∵AD=6,
∴四边形EFGH的周长=AD+BC=6+8=12.
【点睛】
本题考查了平行四边形的判定与性质,三角形的中位线定理,含30度角的直角三角形的性质,熟记三角形的中位线平行于第三边并且等于第三边的一半是解题的关键.
相关试卷
这是一份八年级下册第二十二章 四边形综合与测试优秀达标测试,共30页。试卷主要包含了下列说法不正确的是,如图,菱形的对角线等内容,欢迎下载使用。
这是一份初中数学冀教版八年级下册第二十二章 四边形综合与测试精品精练,共32页。试卷主要包含了六边形对角线的条数共有,下列说法不正确的是等内容,欢迎下载使用。
这是一份冀教版八年级下册第二十二章 四边形综合与测试优秀同步练习题,共32页。试卷主要包含了下列说法不正确的是等内容,欢迎下载使用。