![2022年最新强化训练冀教版八年级数学下册第二十二章四边形重点解析试题(无超纲)第1页](http://img-preview.51jiaoxi.com/2/3/12735163/0/0.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![2022年最新强化训练冀教版八年级数学下册第二十二章四边形重点解析试题(无超纲)第2页](http://img-preview.51jiaoxi.com/2/3/12735163/0/1.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![2022年最新强化训练冀教版八年级数学下册第二十二章四边形重点解析试题(无超纲)第3页](http://img-preview.51jiaoxi.com/2/3/12735163/0/2.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
初中数学冀教版八年级下册第二十二章 四边形综合与测试精品当堂达标检测题
展开
这是一份初中数学冀教版八年级下册第二十二章 四边形综合与测试精品当堂达标检测题,共25页。试卷主要包含了六边形对角线的条数共有等内容,欢迎下载使用。
八年级数学下册第二十二章四边形重点解析 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、如图,四边形中,,对角线,相交于点,于点,于点,连接,,若,则下列结论:①;②;③四边形是平行四边形;④图中共有四对全等三角形.其中正确结论的个数是( )A.4 B.3 C.2 D.12、如图,2002年8月在北京召开的国际数学家大会会标其原型是我国古代数学家赵爽的《勾股弦图》,它是由四个全等的直角三角形拼接而成,如果大正方形的面积是18,直角三角形的直角边长分别为a、b,且a2+b2=ab+10,那么小正方形的面积为( )A.2 B.3 C.4 D.53、在菱形ABCD中,对角线AC,BD相交于点O,如果AC=6,BD=8,那么菱形ABCD的面积是( )A.6 B.12 C.24 D.484、已知在平行四边形ABCD中,∠A=90°,如果添加一个条件,可使该四边形是正方形,那么这个条件可以是( )A.∠D=90° B.AB=CD C.AD=BC D.BC=CD5、如图,在正方形ABCD中,对角线AC与BD相交于点O,E为BC上一点,CE=6,F为DE的中点.若OF的长为1,则△CEF的周长为( )A.14 B.16 C.18 D.126、下面性质中,平行四边形不一定具备的是( )A.对角互补 B.邻角互补C.对角相等 D.对角线互相平分7、六边形对角线的条数共有( )A.9 B.18 C.27 D.548、如图,已知菱形ABCD的边长为2,∠DAB=60°,则对角线BD的长是( )A.1 B.4 C.2 D.69、已知菱形两条对角线的长分别为8和10,则这个菱形的面积是( )A.20 B.40 C.60 D.8010、小明想判断家里的门框是否为矩形,他应该( )A.测量三个角是否都是直角 B.测量对角线是否互相平分C.测量两组对边是否分别相等 D.测量一组对角是否是直角第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、如图,已知长方形ABCD中,AD=3cm,AB=9cm,将此长方形折叠,使点B与点D重合,折痕为EF,则△ADE的面积为_______cm2.2、如图,在平行四边形ABCD中,对角线AC,BD交于点O,AC⊥AB,AB=,且AC:BD=2:3,那么AC的长为___.3、如图,在矩形中,的角平分线交于点,连接,恰好平分,若,则的长为______.4、如图,在中,,,射线AF是的平分线,交BC于点D,过点B作AB的垂线与射线AF交于点E,连结CE,M是DE的中点,连结BM并延长与AC的延长线交于点G.则下列结论正确的是______.① ②BG垂直平分DE ③ ④ ⑤5、如图,在平行四边形 ABCD 中,∠D=100°,AC 为对角线,将△ACD 绕点 A 顺时针旋转一定的角度后得到△AEF,使点 D 的对应点 E 落在边 AB 上,若点 C 的对应点 F 落在边CB 的延长线上,则∠EFB 的度数为___.三、解答题(5小题,每小题10分,共计50分)1、如图,在平行四边形ABCD中,点M是AD边的中点,连接BM,CM,且BM=CM.(1)求证:四边形ABCD是矩形;(2)若△BCM是直角三角形,直接写出AD与AB之间的数量关系.2、如图,是一张放在平面直角坐标系中的长方形纸片,为原点,点在轴的正半轴上,点在轴的正半轴上,,,在边上取一点,将纸片沿翻折,使点落在边上的点处.(1)直接写出点的坐标____________________;(2)求、两点的坐标.3、如图所示,在每个小正方形的边长均为1的网格中,线段AB的端点A、B均在小正方形的顶点上.(1)在图中画出等腰△ABC,且△ABC为钝角三角形,点C在小正方形顶点上;(2)在(1)的条件下确定点C后,再画出矩形BCDE,D,E都在小正方形顶点上,且矩形BCDE的周长为16,直接写出EA的长为 .4、如图,已知平行四边形ABCD.(1)用尺规完成以下基本作图:在CB上截取CE,使CE=CD,连接DE,作∠ABC的平分线BF交AD于点F.(保留作图痕迹,不写作法)(2)在(1)所作的图形中,证明四边形BEDF为平行四边形.5、如图,已知矩形ABCD(AB<AD).E是BC上的点,AE=AD.(1)在线段CD上作一点F,连接EF,使得∠EFC=∠BEA(请用直尺和圆规作图,保留作图痕迹);(2)在(1)作出的图形中,若AB=4,AD=5,求DF的值. -参考答案-一、单选题1、B【解析】【分析】由DE=BF以及DF=BE,可证明Rt△DCF≌Rt△BAE,由FC=EA,以及双垂直可证,四边形CFAE是平行四边形由此可证明②③正确.【详解】解:,,在和中,,,,(故①正确);于点,于点,,,四边形是平行四边形,,(故②正确);,,,,四边形是平行四边形,(故③正确);由以上可得出:,,,,,,等.(故④错误),故正确的有3个,故选:.【点评】此题主要考查了平行四边形的性质与判定以及全等三角形的判定与性质等知识,得出是解题关键.2、A【解析】【分析】由正方形1性质和勾股定理得,再由,得,则,即可解决问题.【详解】解:设大正方形的边长为,大正方形的面积是18,,,,,,小正方形的面积,故选:A.【点睛】本题考查了勾股定理、正方形的性质以及完全平方公式等知识,解题的关键是求出.3、C【解析】【分析】利用菱形的面积公式即可求解.【详解】解:菱形ABCD的面积===24,故选:C.【点睛】本题考查菱形的面积公式,菱形的面积等于对角线乘积的一半.4、D【解析】略5、B【解析】【分析】根据中位线的性质及直角三角形斜边上中线的性质可得:,结合图形得出的周长为,再由中位线的性质得出,在中,利用勾股定理确定,即可得出结论.【详解】解:在正方形ABCD中,,,,∵F为DE的中点,O为BD的中点,∴OF为的中位线且CF为斜边上的中线,∴,∴的周长为,∵,∴,∵,∴,∴,在中,,,,∴,∴的周长为,故选:B.【点睛】题目主要考查正方形的性质,三角形中位线的性质,勾股定理,直角三角形斜边中线的性质等,理解题意,熟练掌握运用各个知识点是解题关键.6、A【解析】【分析】直接利用平行四边形的性质:对角相等、对角线互相平分、对边平行且相等,进而分析得出即可.【详解】解:A、平行四边形对角不一定互补,故符合题意;B、平行四边形邻角互补正确,故不符合题意;C、平行四边形对角相等正确,故不符合题意.D、平行四边形的对角线互相平分正确,故不符合题意;故选A.【点睛】此题主要考查了平行四边形的性质,熟练掌握相关性质是解题关键.7、A【解析】【分析】n边形对角线的总条数为:(n≥3,且n为整数),由此可得出答案.【详解】解:六边形的对角线的条数= =9.故选:A.【点睛】本题考查了多边形的对角线的知识,属于基础题,解答本题的关键是掌握:n边形对角线的总条数为:(n≥3,且n为整数).8、C【解析】略9、B【解析】【分析】根据菱形的面积公式求解即可.【详解】解:这个菱形的面积=×10×8=40.故选:B.【点睛】本题考查了菱形的面积问题,掌握菱形的面积公式是解题的关键.10、A【解析】【分析】根据矩形的判定方法解题.【详解】解:A、三个角都是直角的四边形是矩形,选项A符合题意;B、对角线互相平分的四边形是平行四边形,选项B不符合题意,C、两组对边分别相等的四边形是平行四边形,选项C不符合题意;D、一组对角是直角的四边形不是矩形,选项D不符合题意;故选:A.【点睛】本题考查矩形的判定方法,是重要考点,掌握相关知识是解题关键.二、填空题1、6【解析】【分析】根据折叠的条件可得:,在直角中,利用勾股定理就可以求解.【详解】解:将此长方形折叠,使点与点重合,..,根据勾股定理可知:..解得:.的面积为:.故答案为:.【点睛】本题考查了折叠的性质,三角形的面积,矩形的性质,勾股定理,解题的关键是注意掌握方程思想的应用.2、4【解析】【分析】四边形是平行四边形,可得,由,可知,由可知在中勾股定理求解的值,进而求解的值.【详解】解:∵四边形是平行四边形∴∵∴∵∴∴设则解得:则故故答案为:4.【点睛】本题考查了勾股定理,平行四边形的性质等知识.解题的关键在于正确的求解.3、【解析】【分析】根据矩形的性质得,,,根据BE是的角平分线,得,则,,在中,根据勾股定理得,根据平行线的性质得,由因为EC平分则,等量代换得,所以,,即可得.【详解】解:∵四边形ABCD为矩形,∴,,,∵,BE是的角平分线,∴,∴,在中,根据勾股定理得,,∵,∴,∵EC平分,∴,∴,∴,∴,∴,故答案为:.【点睛】本题考查了矩形的性质,勾股定理,角平分线的性质,平行线的性质,解题的关键是掌握这些知识点.4、①②⑤【解析】【分析】先由题意得到∠ABE=∠ACB=∠BCG=90°,∠BAC=45°,再由角平分线的性质得到∠BAE=∠DAC=22.5°,从而推出∠BEA=∠ADC,则∠BDE=∠BED,再由三线合一定理即可证明BM⊥DE,∠GBE=∠DBG,即可判断②;得到∠MAG+∠MGA=90°,再由∠CBG+∠CGB=90°,可得∠DAC=∠GBC=22.5°,则∠GBE=22.5°,2∠GBE=45°,从而可证明△ACD≌△BCG,即可判断①;则CD=CG,再由AC=BC=BD+CD,可得到AC=BE+CG,即可判断⑤;由∠G=180°-∠BCG-∠CBG=67.5°,即可判断④;延长BE交AC延长线于G,先证△ABH是等腰直角三角形,得到C为AH的中点,然后证BE≠HE,即E不是BH的中点,得到CE不是△ABH的中位线,则CE与AB不平行,即可判断③.【详解】解:∵∠ACB=90°,BE⊥AB,AC=BC,∴∠ABE=∠ACB=∠BCG=90°,∠BAC=45°,∴∠BAE+∠BEA=90°,∠DAC+∠ADC=90°,∵AF平分∠BAC,∴∠BAE=∠DAC=22.5°,∴∠BEA=∠ADC,又∵∠ADC=∠BDE,∴∠BDE=∠BED,∴BD=ED,又∵M是DE的中点,∴BM⊥DE,∠GBE=∠DBG,∴BG垂直平分DE,∠AMG=90°,故②正确,∴∠MAG+∠MGA=90°,∵∠CBG+∠CGB=90°,∴∠DAC=∠GBC=22.5°,∴∠GBE=22.5°,∴2∠GBE=45°,又∵AC=BC,∴△ACD≌△BCG(ASA),故①正确;∴CD=CG,∵AC=BC=BD+CD,∴AC=BE+CG,故⑤正确;∵∠G=180°-∠BCG-∠CBG=67.5°,∴∠G≠2∠GBE,故④错误;如图所示,延长BE交AC延长线于G,∵∠ABH=∠ABC+∠CBH=90°,∠BAC=45°,∴△ABH是等腰直角三角形,∵BC⊥AH,∴C为AH的中点,∵AB≠AH,AF是∠BAH的角平分线,∴BE≠HE,即E不是BH的中点,∴CE不是△ABH的中位线,∴CE与AB不平行,∴BE与CE不垂直,故③错误;故答案为:①②⑤.【点睛】本题主要考查了全等三角形的性质与判定,等腰三角形的性质与判定,三角形中位线定理,三角形内角和定理,熟知等腰三角形的性质与判定条件是解题的挂件.5、20°##20度【解析】【分析】根据平行四边形 ABCD 性质求出∠DAB=180°-∠D=80°,根据△ACD 绕点 A 顺时针旋转一定的角度后得到△AEF,得出AF=AC,∠FAE=∠CAD,∠AFE=∠ACD,利用等腰三角形性质求出∠AFC=∠ACF=,根据平行线性质∠DAC=∠ACF=50°,利用三角形内角和求出∠ACD=180°-∠D-∠CAD=180°-100°-50°=30°即可.【详解】解:在平行四边形 ABCD 中,∠D=100°,∴∠DAB=180°-∠D=80°,∵△ACD 绕点 A 顺时针旋转一定的角度后得到△AEF,∴AF=AC,∠FAE=∠CAD,∠AFE=∠ACD,∴∠FAC=∠FAE+∠BAC=∠CAD+∠BAC=∠BAD=80°∴∠AFC=∠ACF=∵AD∥BC,∴∠DAC=∠ACF=50°,∴∠ACD=180°-∠D-∠CAD=180°-100°-50°=30°,∴∠AFE=∠ACD=30°,∴∠EFB=∠AFC-∠AFE=50°-30°=20°,故答案为20°.【点睛】本题考查平行四边形的性质,图形旋转性质,等腰三角形性质,角的和差,三角形内角和,掌握平行四边形的性质,图形旋转性质,等腰三角形性质,角的和差,三角形内角和是解题关键.三、解答题1、 (1)见解析(2)AD=2AB,理由见解析【解析】【分析】(1)由SSS证明△ABM≌△DCM,得出∠A=∠D,由平行线的性质得出∠A+∠D=180°,证出∠A=90°,即可得出结论;(2)先证明△BCM是等腰直角三角形,得出∠MBC=45°,再证明△ABM是等腰直角三角形,得出AB=AM,即可得出结果.(1)证明:∵点M是AD边的中点,∴AM=DM,∵四边形ABCD是平行四边形,∴AB=DC,AB∥CD,在△ABM和△DCM中,,∴△ABM≌△DCM(SSS),∴∠A=∠D,∵AB∥CD,∴∠A+∠D=180°,∴∠A=90°,∵四边形ABCD是平行四边形,∴四边形ABCD是矩形;(2)解:AD与AB之间的数量关系:AD=2AB,理由如下:∵△BCM是直角三角形,BM=CM,∴△BCM是等腰直角三角形,∴∠MBC=45°,由(1)得:四边形ABCD是矩形,∴AD∥BC,∠A=90°,∴∠AMB=∠MBC=45°,∴△ABM是等腰直角三角形,∴AB=AM,∵点M是AD边的中点,∴AD=2AM,∴AD=2AB.【点睛】本题考查了矩形的判定与性质、平行四边形的性质、平行线的性质、全等三角形的判定与性质、等腰直角三角形的的判定与性质等知识;熟练掌握平行四边形的性质,证明△ABM≌△DCM是解题的关键.2、 (1)(10,8)(2)D(0,5),E(4,8)【解析】【分析】(1)根据,,可得点的坐标;(2)根据折叠的性质,可得AE=AO,OD=ED,根据勾股定理,可得EB的长,根据线段的和差,可得CE的长,可得E点坐标;再根据勾股定理,可得OD的长,可得D点坐标;(1)解:∵,,∴点的坐标(10,8),故答案为:(10,8);(2)解:依题意可知,折痕AD是四边形OAED的对称轴,在Rt△ABE中,AE=AO=10,AB=OC=8,由勾股定理,得BE= =6,CE=BC-BE=10-6=4,E(4,8).在Rt△DCE中,由勾股定理,得DC2+CE2=DE2,又∵DE=OD,CD=8-OD,(8-OD)2+42=OD2,解得OD=5,D(0,5).所以D(0,5),E(4,8);【点睛】本题主要考查了、矩形的性质、翻折变换、勾股定理等知识点,熟知折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等是解答此题的关键.3、 (1)见解析(2)画图见解析,【解析】【分析】(1)作出腰为5且∠ABC是钝角的等腰三角形ABC即可;(2)作出边长分别为5,3的矩形ABDE即可.(1)解:如图,AB==BC,∠ABC>90°,所以△ABC即为所求;(2)解:如图,矩形BCDE即为所求.AE= .故答案为:.【点睛】本题考查作图-应用与设计作图,等腰三角形的判定,矩形的判定,勾股定理等知识,解题的关键是学会利用数形结合的思想解决问题,属于中考常考题型.4、 (1)见解析(2)见解析【解析】【分析】(1)延长CB到E使CE=CD,然后作∠ABC的平分线交AD的延长线于F;(2)先根据平行四边形的性质得到AD=BC,AB=CD,ADBC,则CE=AB,再证明∠ABF=∠F得到AB=AF,然后证明BE=DF,从而可判断四边形BEDF为平行四边形.(1)如图,DE、BF为所作;(2)证明:∵四边形ABCD为平行四边形,∴AD=BC,AB=CD,AD∥BC,∵CE=CD,∴CE=AB,∵BF平分∠ABC,∴∠ABF=∠CBF,∵AFBC,∴∠CBF=∠F,∴∠ABF=∠F,∴AB=AF,∴CE=AF,即CB+BE=AD+DF,∴BE=DF,∵BEDF,∴四边形BEDF为平行四边形.【点睛】本题考查了作线段,作角平分线,平行四边形的性质与判定,掌握以上知识是解题的关键.5、 (1)见解析(2)【解析】【分析】(1)作∠DAE的角平分线,与DC的交点即为所求,理由:可先证明△AEF≌△ADF,可得∠AEF=∠D=90°,从而得到∠DAE+∠DFE=180°,进而得到∠EFC=∠DAE,再由AD∥BC,即可求解;(2)根据矩形的性质可得∠B=∠C=∠D=90°,AD=BC=5,AB=CD=4,从而得到BE=3,进而得到EC=2,然后在 中,由勾股定理,即可求解.(1)解:如图,作∠DAE的角平分线,与DC的交点即为所求.∵AE=AD,∠EAF=∠DAF,AF=AF,∴△AEF≌△ADF,∴∠AEF=∠D=90°,∴∠DAE+∠DFE=180°,∵∠EFC+∠DFE=180°,∴∠EFC=∠DAE,∵在矩形ABCD中,AD∥BC,∴∠BEA=∠DAE,∴∠EFC=∠BEA;(2)解:∵四边形ABCD是矩形,∴∠B=∠C=∠D=90°,AD=BC=5,AB=CD=4,∵AE=AD=5,∴BE===3,∴EC=BC﹣BE=5﹣3=2,由(1)得:△AEF≌△ADF,∴ ,在 中, ,∴ ,∴ .【点睛】本题主要考查了矩形的性质,全等三角形的判定和性质,勾股定理等知识,熟练掌握矩形的性质,全等三角形的判定和性质,勾股定理是解题的关键.
相关试卷
这是一份初中数学冀教版八年级下册第二十二章 四边形综合与测试精品当堂检测题,共30页。
这是一份初中数学冀教版八年级下册第二十二章 四边形综合与测试精品课后练习题,共30页。试卷主要包含了如图,在中,DE平分,,则等内容,欢迎下载使用。
这是一份冀教版八年级下册第二十二章 四边形综合与测试精品综合训练题,共33页。试卷主要包含了下列说法不正确的是,六边形对角线的条数共有,在中,若,则的度数是等内容,欢迎下载使用。
![文档详情页底部广告位](http://img.51jiaoxi.com/images/257d7bc79dd514896def3dc0b2e3f598.jpg)