搜索
    上传资料 赚现金
    英语朗读宝

    精品试卷冀教版八年级数学下册第二十二章四边形专题攻克试题(含答案及详细解析)

    精品试卷冀教版八年级数学下册第二十二章四边形专题攻克试题(含答案及详细解析)第1页
    精品试卷冀教版八年级数学下册第二十二章四边形专题攻克试题(含答案及详细解析)第2页
    精品试卷冀教版八年级数学下册第二十二章四边形专题攻克试题(含答案及详细解析)第3页
    还剩23页未读, 继续阅读
    下载需要20学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    初中数学冀教版八年级下册第二十二章 四边形综合与测试精品达标测试

    展开

    这是一份初中数学冀教版八年级下册第二十二章 四边形综合与测试精品达标测试,共26页。试卷主要包含了下列关于的叙述,正确的是等内容,欢迎下载使用。
    八年级数学下册第二十二章四边形专题攻克
    考试时间:90分钟;命题人:数学教研组
    考生注意:
    1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
    2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
    3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
    第I卷(选择题 30分)
    一、单选题(10小题,每小题3分,共计30分)
    1、如图,四边形ABCD的对角线交于点O,下列哪组条件不能判断四边形ABCD是平行四边形( )

    A.OA=OC,OB=OD B.AB=CD,AO=CO
    C.AB=CD,AD=BC D.∠BAD=∠BCD,AB∥CD
    2、下列说法不正确的是(  )
    A.矩形的对角线相等
    B.直角三角形斜边上的中线等于斜边的一半
    C.对角线互相垂直且相等的四边形是正方形
    D.菱形的对角线互相垂直
    3、如图,△ABC的周长为a,以它的各边的中点为顶点作△A1B1C1,再以△AB1C1各边的中点为顶点作△A2B2C2,再以△AB2C2各边的中点为顶点作△A3B3C3,…如此下去,则△AnBnCn的周长为(  )

    A.a B.a C.a D.a
    4、一个多边形的每个内角均为150°,则这个多边形是( )
    A.九边形 B.十边形 C.十一边形 D.十二边形
    5、如图,将矩形ABCD绕点B按顺时针方向旋转一定角度得到矩形.此时点A的对应点恰好落在对角线AC的中点处.若AB=3,则点B与点之间的距离为( )

    A.3 B.6 C. D.
    6、在下列条件中,不能判定四边形是平行四边形的是( )
    A.AB∥CD,AD∥BC B.AB=CD,AD=BC
    C.AB ∥CD,AB=CD D.AB∥CD,AD=BC
    7、下列关于的叙述,正确的是( )
    A.若,则是矩形 B.若,则是正方形
    C.若,则是菱形 D.若,则是正方形
    8、能够判断一个四边形是矩形的条件是( )
    A.对角线相等 B.对角线垂直
    C.对角线互相平分且相等 D.对角线垂直且相等
    9、如图,已知长方形,,分别是,上的点,,分别是,的中点,当点在上从点向点移动,而点不动时,那么下列结论成立的是( )

    A.线段的长逐渐增大 B.线段的长逐渐减少
    C.线段的长不变 D.线段的长先增大后变小
    10、在锐角△ABC中,∠BAC=60°,BN、CM为高,P为BC的中点,连接MN、MP、NP,则结论:①NP=MP;②AN:AB=AM:AC;③BN=2AN;④当∠ABC=60°时,MN∥BC,一定正确的有( )

    A.①②③ B.②③④ C.①②④ D.①④
    第Ⅱ卷(非选择题 70分)
    二、填空题(5小题,每小题4分,共计20分)
    1、三角形的各边长分别是8、10、12、则连接各边中点所得的三角形的周长是___.
    2、如图,矩形纸片,,.如果点在边上,将纸片沿折叠,使点落在点处,如果直线经过点,那么线段的长是_______.

    3、已知一个多边形的内角和为,则这个多边形是________边形.
    4、过某个多边形一个顶点的所有对角线,将此多边形分成7个三角形,则此多边形的边数______.
    5、如图,在平面直角坐标系xOy中,菱形ABCD的顶点D在x轴上,边BC在y轴上,若点A的坐标为(12,13),则点C的坐标是___.

    三、解答题(5小题,每小题10分,共计50分)
    1、已知:在平行四边形ABCD中,分别延长BA,DC到点E,H,使得BE=2AB,DH=2CD.连接EH,分别交AD,BC于点F,G.

    (1)求证:AF=CG;
    (2)连接BD交EH于点O,若EH⊥BD,则当线段AB与线段AD满足什么数量关系时,四边形BEDH是正方形?
    2、如图1,已知∠ACD是ABC的一个外角,我们容易证明∠ACD=∠A+∠B,即:三角形的一个外角等于与它不相邻的两个内角的和.那么,三角形的一个内角与它不相邻的两个外角的和之间存在怎样的数量关系呢?

    (1)尝试探究:如图2,已知:∠DBC与∠ECB分别为ABC的两个外角,则∠DBC+∠ECB-∠A 180°.(横线上填<、=或>)
    (2)初步应用:如图3,在ABC中,BP、CP分别平分外角∠DBC、∠ECB,∠P与∠A有何数量关系?请利用上面的结论直接写出答案:∠P= .
    (3)解决问题:如图4,在四边形ABCD中,BP、CP分别平分外角∠EBC、∠FCB,请利用上面的结论探究∠P与∠BAD、∠CDA的数量关系.
    3、若直线分别交轴、轴于A、C两点,点P是该直线上在第一象限内的一点,PB⊥轴,B为垂足,且S△ABC= 6

    (1)求点B和P的坐标;
    (2)点D是直线AP上一点,△ABD是直角三角形,求点D坐标;
    (3)请问坐标平面是否存在点Q,使得以Q、C、P、B为顶点四边形是平行四边形,若存在请直接写出点Q的坐标;若不存在,请说明理由.
    4、如图,已知矩形ABCD(AB<AD).E是BC上的点,AE=AD.

    (1)在线段CD上作一点F,连接EF,使得∠EFC=∠BEA(请用直尺和圆规作图,保留作图痕迹);
    (2)在(1)作出的图形中,若AB=4,AD=5,求DF的值.
    5、已知正方形与正方形,,.

    (1)如图1,若点和点重合,点在线段上,点在线段的延长线上,连接、、,将阴影部分三角形的面积记作,则 (用含有、的代数式表示).
    (2)如图2,若点与点重合,点在线段上,点在线段的延长线上,连接、、,将阴影部分三角形的面积记作,则 (用含有、的代数式表示).
    (3)如图3,若将正方形沿正方形的边所在直线平移,使得点、在线段上(点不与点重合、点不与点重合),连接、、,设,将阴影部分三角形的面积记作,则 (用含有、、的代数式表示).
    (4)如图4,若将正方形沿正方形的边所在直线平移,使得点、在的延长线上,连接、、,设,将阴影部分三角形的面积记作,则 (用含有、、的代数式表示).

    -参考答案-
    一、单选题
    1、B
    【解析】

    2、C
    【解析】
    【分析】
    利用矩形的性质,直角三角形的性质,正方形的判定,菱形的性质依次判断可求解.
    【详解】
    解;矩形的对角线相等,故选项A不符合题意;
    直角三角形斜边上的中线等于斜边的一半,故选项B不符合题意;
    对角线互相垂直且相等的四边形不一定是正方形,故选项C符合题意;
    菱形的对角线互相垂直,故选项D不符合题意;
    故选:C.
    【点睛】
    本题考查了正方形的判定,矩形的性质,菱形的性质,直角三角形的性质,熟练运用这些性质解决问题是本题的关键.
    3、A
    【解析】
    【分析】
    根据三角形中位线的性质可知的周长的周长,的周长的周长,以此类推找出规律,写出代数式,再整理即可选择.
    【详解】
    解:∵以△ABC的各边的中点为顶点作,
    ∴的周长的周长.
    ∵以各边的中点为顶点作,
    ∴的周长的周长,
    …,
    ∴的周长
    故选:A.
    【点睛】
    本题主要考查三角形中位线的性质,根据三角形中位线的性质求出前2个三角形的面积总结出规律是解答本题的关键.
    4、D
    【解析】
    【分析】
    先求出多边形的外角度数,然后即可求出边数.
    【详解】
    解:∵多边形的每个内角都等于150°,
    ∴多边形的每个外角都等于180°-150°=30°,
    ∴边数n=360°÷30°=12,
    故选:D.
    【点睛】
    本题考查多边形的内角和、外角来求多边形的边数,属于基础题,熟练掌握多边形中内角和定理公式是解决本类题的关键.
    5、B
    【解析】
    【分析】
    连接,由矩形的性质得出∠ABC=90°,AC=BD,由旋转的性质得出,证明是等边三角形,由等边三角形的性质得出,由直角三角形的性质求出AC的长,由矩形的性质可得出答案.
    【详解】
    解:连接,

    ∵四边形ABCD是矩形,
    ∴∠ABC=90°,AC=BD,
    ∵点是AC的中点, ∴,
    ∵将矩形ABCD绕点B按顺时针方向旋转一定角度得到矩形,

    ∴,
    ∴是等边三角形,
    ∴∠BAA'=60°,
    ∴∠ACB=30°,
    ∵AB=3, ∴AC=2AB=6,
    ∴.
    即点B与点之间的距离为6.
    故选:B.
    【点睛】
    本题考查了旋转的性质,矩形的性质,直角三角形的性质,等边三角形的判定和性质,求出AC的长是解本题的关键.
    6、D
    【解析】

    7、A
    【解析】
    【分析】
    由菱形的判定方法、矩形的判定方法、正方形的判定方法得出选项、、错误,正确;即可得出结论.
    【详解】
    解:中,,
    四边形是矩形,选项符合题意;
    中,,
    四边形是菱形,不一定是正方形,选项不符合题意;
    中,,
    四边形是矩形,不一定是菱形,选项不符合题意;
    中,,
    四边形是菱形,选项不符合题意;
    故选:.
    【点睛】
    本题考查了平行四边形的性质、菱形的判定方法、矩形的判定方法、正方形的判定方法;熟练掌握矩形、菱形、正方形的判定方法是解决问题的关键.
    8、C
    【解析】

    9、C
    【解析】
    【分析】
    因为R不动,所以AR不变.根据三角形中位线定理可得EF=AR,因此线段EF的长不变.
    【详解】
    解:连接.

    、分别是、的中点,
    为的中位线,
    ,为定值.
    线段的长不改变.
    故选:.
    【点睛】
    本题考查了三角形的中位线定理,只要三角形的边AR不变,则对应的中位线的长度就不变.
    10、C
    【解析】
    【分析】
    利用直角三角形斜边上的中线的性质即可判定①正确;利用含30度角的直角三角形的性质即可判定②正确,由勾股定理即可判定③错误;由等边三角形的判定及性质、三角形中位线定理即可判定④正确.
    【详解】
    ∵CM、BN分别是高
    ∴△CMB、△BNC均是直角三角形
    ∵点P是BC的中点
    ∴PM、PN分别是两个直角三角形斜边BC上的中线

    故①正确
    ∵∠BAC=60゜
    ∴∠ABN=∠ACM=90゜−∠BAC=30゜
    ∴AB=2AN,AC=2AM
    ∴AN:AB=AM:AC=1:2
    即②正确
    在Rt△ABN中,由勾股定理得:
    故③错误
    当∠ABC=60゜时,△ABC是等边三角形
    ∵CM⊥AB,BN⊥AC
    ∴M、N分别是AB、AC的中点
    ∴MN是△ABC的中位线
    ∴MN∥BC
    故④正确
    即正确的结论有①②④
    故选:C
    【点睛】
    本题考查了直角三角形斜边上中线的性质,含30度角的直角三角形的性质,等边三角形的判定及性质,勾股定理,三角形中位线定理等知识,掌握这些知识并正确运用是解题的关键.
    二、填空题
    1、15
    【解析】
    【分析】
    由中点和中位线定义可得新三角形的各边长为原三角形各边长的一半,即可求其周长.
    【详解】
    解:如图,D,E,F分别是△ABC的三边的中点,
    则DE=AC,DF=BC,EF=AB,
    ∴△DEF的周长=DE+DF+EF=(AC+BC+AB)=×(8+10+12)cm=15cm.
    故答案为15.

    【点睛】
    本题考查了三角形的中位线定理,熟记三角形的中位线平行于第三边并且等于第三边的一半可得中点三角形的周长等于原三角形的周长的一半是解题的关键.
    2、
    【解析】
    【分析】
    根据题意可知∠AFD=90°,利用勾股定理得DF=,再证明AD=DE,即可得出EF的长,从而解决问题.
    【详解】
    如图,∵将纸片沿AE折叠,使点B落在点F处,
    ∴AB=AF=3,∠B=∠AFE=90°,∠AEB=∠AED,

    ∵AD∥BC,
    ∴∠DAE=∠AED,
    ∴∠DAE=∠AED,
    ∴AD=DE=4,
    在Rt△ADF中,由勾股定理得:,
    ∴EF=DE-DF=,
    ∴BE=EF=,
    故答案为:.
    【点睛】
    本题主要考查了翻折变换,勾股定理,等腰三角形的判定,平行线的性质等知识,证明AD=DE是解题的关键.
    3、八##8
    【解析】
    【分析】
    n边形的内角和是(n-2)•180°,如果已知多边形的边数,就可以得到一个关于边数的方程,解方程就可以求出多边形的边数.
    【详解】
    解:根据n边形的内角和公式,得
    (n-2)•180=1080,
    解得n=8.
    ∴这个多边形的边数是8.
    故答案为:八.
    【点睛】
    本题考查了多边形的内角与外角,熟记内角和公式和外角和定理并列出方程是解题的关键.根据多边形的内角和定理,求边数的问题就可以转化为解方程的问题来解决.
    4、9
    【解析】
    【分析】
    根据n边形从一个顶点出发可引出(n-3)条对角线,可组成n-2个三角形,依此可得n的值.
    【详解】
    解:由题意得,n-2=7,
    解得:n=9,
    即这个多边形是九边形.
    故答案为:9.
    【点睛】
    本题考查了多边形的对角线,求对角线条数时,直接代入边数n的值计算,而计算边数时,需利用方程思想,解方程求n.
    5、(0,-5)
    【解析】
    【分析】
    在Rt△ODC中,利用勾股定理求出OC即可解决问题.
    【详解】
    解:∵A(12,13),
    ∴OD=12,AD=13,
    ∵四边形ABCD是菱形,
    ∴CD=AD=13,
    在Rt△ODC中,,
    ∴C(0,-5).
    故答案为:(0,-5)
    【点睛】
    本题考查菱形的性质、勾股定理等知识,解题的关键是灵活运用所学知识解决问题.
    三、解答题
    1、 (1)见解析
    (2)当AD=AB时,四边形BEDH是正方形
    【解析】
    【分析】
    (1)要证明AF=CG,只要证明△EAF≌△HCG即可;
    (2)利用已知可得四边形BEDH是菱形,所以当AE2+DE2=AD2时,∠BED=90°,四边形BEDH是正方形.
    (1)
    证明:∵四边形ABCD是平行四边形,
    ∴AB∥CD,AB=CD,∠BAD=∠BCD,
    ∴∠AEF=∠CHG,
    ∵BE=2AB,DH=2CD,
    ∴BE=DH,
    ∴BE-AB=DH-DC,
    ∴AE=CH,
    ∴∠BAD+∠EAF=180°,∠BCD+∠GCH=180°,
    ∴∠EAF=∠GCH,
    ∴△EAF≌△HCG(ASA),
    ∴AF=CG;
    (2)
    解:当AD=AB时,四边形BEDH是正方形;
    理由:∵BE∥DH,BE=DH,
    ∴四边形EBHD是平行四边形,
    ∵EH⊥BD,
    ∴四边形EBHD是菱形,
    ∴ED=EB=2AB,
    当AE2+DE2=AD2时,则∠BED=90°,
    ∴四边形BEDH是正方形,即AB2+(2AB)2=AD2,
    ∴AD=AB,
    ∴当AD=AB时,四边形BEDH是正方形.

    【点睛】
    本题考查了正方形的判定,菱形的判定,平行四边形的性质,全等三角形的判定与性质,结合图形分析并熟练掌握正方形的判定,平行四边形的性质,是解题的关键.
    2、 (1)=
    (2)∠P=90°-∠A
    (3)∠P=180°-∠BAD-∠CDA,探究见解析
    【解析】
    【分析】
    (1)根据三角形外角的性质得:∠DBC=∠A+∠ACB,∠ECB=∠A+∠ABC,两式相加可得结论;
    (2)根据角平分线的定义得:∠CBP=∠DBC,∠BCP=∠ECB,根据三角形内角和可得:∠P的式子,代入(1)中得的结论:∠DBC+∠ECB=180°+∠A,可得:∠P=90°−∠A;
    (3)根据平角的定义得:∠EBC=180°-∠1,∠FCB=180°-∠2,由角平分线得:∠3=∠EBC=90°−∠1,∠4=∠FCB=90°−∠2,相加可得:∠3+∠4=180°−(∠1+∠2),再由四边形的内角和与三角形的内角和可得结论.
    (1)
    ∠DBC+∠ECB-∠A=180°,
    理由是:∵∠DBC=∠A+∠ACB,∠ECB=∠A+∠ABC,
    ∴∠DBC+∠ECB=2∠A+∠ACB+∠ABC=180°+∠A,
    ∴∠DBC+∠ECB-∠A=180°,
    故答案为:=;
    (2)
    ∠P=90°-∠A,
    理由是:∵BP平分∠DBC,CP平分∠ECB,
    ∴∠CBP=∠DBC,∠BCP=∠ECB,
    ∵△BPC中,∠P=180°-∠CBP-∠BCP=180°-(∠DBC+∠ECB),
    ∵∠DBC+∠ECB=180°+∠A,
    ∴∠P=180°-(180°+∠A)=90°-∠A.
    故答案为:∠P=90°-∠A,
    (3)
    ∠P=180°-∠BAD-∠CDA,
    理由是:如图,

    ∵∠EBC=180°-∠1,∠FCB=180°-∠2,
    ∵BP平分∠EBC,CP平分∠FCB,
    ∴∠3=∠EBC=90°-∠1,∠4=∠FCB=90°-∠2,
    ∴∠3+∠4=180°-(∠1+∠2),
    ∵四边形ABCD中,∠1+∠2=360°-(∠BAD+∠CDA),
    又∵△PBC中,∠P=180°-(∠3+∠4)=(∠1+∠2),
    ∴∠P=×[360°-(∠BAD+∠CDA)]=180°-(∠BAD+∠CDA)=180°-∠BAD-∠CDA.
    【点睛】
    本题是四边形和三角形的综合问题,考查了三角形和四边形的内角和定理、三角形外角的性质、角平分线的定义等知识,熟练掌握三角形外角的性质是关键.
    3、 (1)B(2,0),P(2,3)
    (2)(2,3)或(,)
    (3)(0,5)或(0,-1)或(4,1)
    【解析】
    【分析】
    (1)设B(x,0),则P(x,x+2),由S△ABC=6列方程求出x的值,即得到点B和点P的坐标;
    (2)当点D与点P重合时,△ABD是直角三角形;当点D与点P不重合时,过点C作CE⊥AP,先求出直线CE的解析式,再由直线BD∥CE求出直线BD的解析式且与y=x+2联立方程组,求出点D的坐标;
    (3)画出图形,根据平行四边形的性质分三种情况得出点Q坐标.
    (1)
    解:如图1,设B(x,0),则P(x,x+2),

    对于y=x+2,当y=0时,由x+2=0,得,x=-4;当x=0时,y=2,
    ∴A(-4,0),C(0,2),
    ∵点P在第一象限,且S△ABC=6,
    ∴×2(x+4)=6,
    解得x=2,
    ∴B(2,0),P(2,3).
    (2)
    如图1,点D与点P重合,此时∠ABD=∠ABP=90°,
    ∴△ABD是直角三角形,
    此时D(2,3);
    如图2,点D在线段AP上,∠ADB=90°,
    此时△ABD是直角三角形,作CE⊥AP,交x轴于点E,

    则∠ACE=∠ADB=90°,
    ∴BD∥CE,AC=,
    设E(m,0),
    由AE•OC=AC•CE=S△ACE,得AE•OC=AC•CE,
    ∴2(m+4)=CE,
    ∴CE=(m+4),
    ∵∠COE=90°,
    ∴OE2+OC2=CE2,
    ∴m2+22=(m+4)]2,
    整理得,m2-2m+1=0,
    解得,m1=m2=1,
    ∴E(1,0);
    设直线CE的解析式为y=kx+2,则k+2=0,
    解得,k=-2,
    ∴y=-2x+2;
    设直线BD的解析式为y=-2x+n,则-2×2+n=0,
    解得,n=4,
    ∴y=-2x+4,
    由,得:,
    ∴D(,);
    由图象可知,当点D在PA的延长线上,或点D在AP的延长线上,则△ABD不能是直角三角形,
    综上所述,点D的坐标是(2,3)或(,);
    (3)
    存在.如图,

    当四边形CQBP是平行四边形时,
    此时,CQ=PB=3,
    ∴Q(0,-1);
    当四边形CQ1PB是平行四边形时,
    此时,CQ1=PB=3,
    ∴Q1(0,5);
    当四边形CPQ2B是平行四边形时,
    此时,CP∥BQ2且CB∥PQ2,
    ∴Q2(4,1);
    综上所述,点Q的坐标为(0,5)或(0,-1)或(4,1).
    【点睛】
    此题重点考查一次函数的图象与性质、平行四边形的判定与性质、勾股定理等知识点,在解第(2)题、第(3)题时,应进行分类讨论,求出所有符合条件的结果,此题综合性较强,难度较大,属于考试压轴题.
    4、 (1)见解析
    (2)
    【解析】
    【分析】
    (1)作∠DAE的角平分线,与DC的交点即为所求,理由:可先证明△AEF≌△ADF,可得∠AEF=∠D=90°,从而得到∠DAE+∠DFE=180°,进而得到∠EFC=∠DAE,再由AD∥BC,即可求解;
    (2)根据矩形的性质可得∠B=∠C=∠D=90°,AD=BC=5,AB=CD=4,从而得到BE=3,进而得到EC=2,然后在 中,由勾股定理,即可求解.
    (1)
    解:如图,作∠DAE的角平分线,与DC的交点即为所求.

    ∵AE=AD,∠EAF=∠DAF,AF=AF,
    ∴△AEF≌△ADF,
    ∴∠AEF=∠D=90°,
    ∴∠DAE+∠DFE=180°,
    ∵∠EFC+∠DFE=180°,
    ∴∠EFC=∠DAE,
    ∵在矩形ABCD中,AD∥BC,
    ∴∠BEA=∠DAE,
    ∴∠EFC=∠BEA;
    (2)
    解:∵四边形ABCD是矩形,
    ∴∠B=∠C=∠D=90°,AD=BC=5,AB=CD=4,
    ∵AE=AD=5,
    ∴BE===3,
    ∴EC=BC﹣BE=5﹣3=2,
    由(1)得:△AEF≌△ADF,
    ∴ ,
    在 中, ,
    ∴ ,
    ∴ .
    【点睛】
    本题主要考查了矩形的性质,全等三角形的判定和性质,勾股定理等知识,熟练掌握矩形的性质,全等三角形的判定和性质,勾股定理是解题的关键.
    5、 (1)
    (2)
    (3)
    (4)

    相关试卷

    冀教版八年级下册第二十二章 四边形综合与测试优秀测试题:

    这是一份冀教版八年级下册第二十二章 四边形综合与测试优秀测试题,共29页。试卷主要包含了如图,在中,DE平分,,则,如图,已知矩形ABCD中,R,已知等内容,欢迎下载使用。

    初中数学冀教版八年级下册第二十二章 四边形综合与测试精品习题:

    这是一份初中数学冀教版八年级下册第二十二章 四边形综合与测试精品习题,共28页。试卷主要包含了如图,已知矩形ABCD中,R,下列命题错误的是等内容,欢迎下载使用。

    初中数学冀教版八年级下册第二十二章 四边形综合与测试优秀一课一练:

    这是一份初中数学冀教版八年级下册第二十二章 四边形综合与测试优秀一课一练,共27页。试卷主要包含了如图,在中,DE平分,,则,如图,已知矩形ABCD中,R等内容,欢迎下载使用。

    文档详情页底部广告位
    • 课件
    • 教案
    • 试卷
    • 学案
    • 其他
    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map