初中数学冀教版八年级下册第二十二章 四边形综合与测试精品课时练习
展开
这是一份初中数学冀教版八年级下册第二十二章 四边形综合与测试精品课时练习,共25页。试卷主要包含了下列命题是真命题的有个.,下列命题错误的是等内容,欢迎下载使用。
八年级数学下册第二十二章四边形专项攻克
考试时间:90分钟;命题人:数学教研组
考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)
一、单选题(10小题,每小题3分,共计30分)
1、如图,菱形OABC的边OA在平面直角坐标系中的x轴上,,,则点C的坐标为( )
A. B. C. D.
2、如图.在长方形纸片ABCD中,AB=12,AD=20,所示,折叠纸片,使点A落在BC边上的A′处,折痕为PQ,当点A′在BC边上移动时,折痕的端点P、Q也随之移动.点P,Q分别在边AB、AD上移动,则点A′在BC边上可移动的最大距离为( )
A.8 B.10 C.12 D.16
3、正方形具有而矩形不一定具有的性质是( )
A.四个角相等 B.对角线互相垂直
C.对角互补 D.对角线相等
4、在锐角△ABC中,∠BAC=60°,BN、CM为高,P为BC的中点,连接MN、MP、NP,则结论:①NP=MP;②AN:AB=AM:AC;③BN=2AN;④当∠ABC=60°时,MN∥BC,一定正确的有( )
A.①②③ B.②③④ C.①②④ D.①④
5、下列命题是真命题的有( )个.
①一组对边相等的四边形是矩形;②两条对角线相等的四边形是矩形;③四条边都相等且对角线互相垂直的四边形是正方形;④四条边都相等的四边形是菱形;⑤一组邻边相等的矩形是正方形.
A.1 B.2 C.3 D.4
6、如图,为了测量一块不规则绿地B,C两点间的距离,可以在绿地的一侧选定一点A,然后测量出AB,AC的中点D,E,如果测量出D,E两点间的距离是8m,那么绿地B,C两点间的距离是( )
A.4m B.8m C.16m D.20m
7、如图,将边长为6个单位的正方形ABCD沿其对角线BD剪开,再把△ABD沿着DC方向平移,得到△A′B′D′,当两个三角形重叠部分的面积为4个平方单位时,它移动的距离DD′等于( )
A.2 B. C. D.
8、下列命题错误的是( )
A.两组对边分别平行的四边形是平行四边形
B.两组对边分别相等的四边形是平行四边形
C.一组对边平行,另一组对边相等的四边形是平行四边形
D.对角线互相平分的四边形是平行四边形
9、下列命题中,是真命题的是( ).A.三角形的外心是三角形三个内角角平分线的交点
B.满足的三个数,,是勾股数
C.对角线相等的四边形各边中点连线所得四边形是矩形
D.五边形的内角和为
10、已知在平行四边形ABCD中,∠A=90°,如果添加一个条件,可使该四边形是正方形,那么这个条件可以是( )
A.∠D=90° B.AB=CD C.AD=BC D.BC=CD
第Ⅱ卷(非选择题 70分)
二、填空题(5小题,每小题4分,共计20分)
1、如图,在菱形ABCD中,点M、N分别交于AB、CD上,AM=CN,MN与AC交于点O,连接BO.若∠OBC=62°,则∠DAC为____°.
2、如图,已知矩形ABCD中,AD=3,AB=5,E是边DC上一点,将ADE绕点A顺时针旋转得到,使得点D的对应点落在AE上,如果的延长线恰好经过点B,那么DE的长度等于_____.
3、两组对边分别________的四边形叫做平行四边形.
平行四边形不相邻的两个顶点连成的线段叫它的________.
如图所示的四边形ABCD是平行四边形.
记作:________,读作:平行四边形ABCD
线段________、________就是平行四边形ABCD的对角线.
平行四边形相对的边,称为 ________,相对的角称为________.
对边:AB与CD;BC与DA.
对角:∠ABC与∠CDA;∠BAD与∠DCB.
4、在菱形中,,其所对的对角线长为2,则菱形的面积是__.
5、五边形内角和为__________.
三、解答题(5小题,每小题10分,共计50分)
1、如图,在中,,,E、F分别为AB、CD边上两点,FB平分.
(1)如图1,若,,求CD的长;
(2)如图2,若G为EF上一点,且,求证:.
2、(1)【探究一】如图1,我们可以用不同的算法来计算图形的面积.
①方法1:如果把图1看成一个大正方形,那么它的面积为 ;
②方法2:如果把图1看成是由2个大小不同的正方形和2个大小相同的小长方形组成的图形,那么它的面积为 ;(写成关于a、b的两次三项式)用两种不同的算法计算同一个图形的面积,可以得到等式 .
(2)【探究二】如图2,从一个顶点处引n条射线,请你数一数共有多少个锐角呢?
①方法1:一路往下数,不回头数.
以OA1为边的锐角有∠A1OA2、∠A1OA3、∠A1OA4、…、∠A1OAn,共有(n-1)个;
以OA2为边的锐角有∠A2OA3、∠A2OA4、…、∠A2OAn,共有(n-2)个;
以OA3为边的锐角有∠A3OA4、…、∠A3OAn,共有(n-3)个;
以OAn-1为边的锐角有∠An-1OAn,共有1个;
则图中锐角的总个数是 ;
②方法2:每一条边都能和除它以外的(n-1)条边形成锐角,共有n条边,可形成n(n-1)个锐角,但所有锐角都数了两遍,所以锐角的总个数是 ;
用两种不同的方法数锐角个数,可以得到等式 .
(3)【应用】分别利用【探究一】中得到的等式和【探究二】中运用的思想解决问题.
①计算:19782+20222;
②多边形中连接任意两个不相邻顶点的线段叫做对角线,如五边形共有5条对角线,则十七边形共有 条对角线,n边形共有 条对角线.
3、如图,是一张放在平面直角坐标系中的长方形纸片,为原点,点在轴的正半轴上,点在轴的正半轴上,,,在边上取一点,将纸片沿翻折,使点落在边上的点处.
(1)直接写出点的坐标____________________;
(2)求、两点的坐标.
4、如图所示,在每个小正方形的边长均为1的网格中,线段AB的端点A、B均在小正方形的顶点上.
(1)在图中画出等腰△ABC,且△ABC为钝角三角形,点C在小正方形顶点上;
(2)在(1)的条件下确定点C后,再画出矩形BCDE,D,E都在小正方形顶点上,且矩形BCDE的周长为16,直接写出EA的长为 .
5、如图,在Rt△ABC中,∠ABC=90°,∠C=30°,AC=12cm,点E从点A出发沿AB以每秒1cm的速度向点B运动,同时点D从点C出发沿CA以每秒2cm的速度向点A运动,运动时间为t秒(0<t<6),过点D作DF⊥BC于点F.
(1)试用含t的式子表示AE、AD、DF的长;
(2)如图①,连接EF,求证四边形AEFD是平行四边形;
(3)如图②,连接DE,当t为何值时,四边形EBFD是矩形?并说明理由.
-参考答案-
一、单选题
1、A
【解析】
【分析】
如图:过C作CE⊥OA,垂足为E,然后求得∠OCE=30°,再根据含30°角直角三角形的性质求得OE,最后运用勾股定理求得CE即可解答.
【详解】
解:如图:过C作CE⊥OA,垂足为E,
∵菱形OABC,
∴OC=OA=4
∵,
∴∠OCE=30°
∵OC=4
∴OE=2
∴CE=
∴点C的坐标为.
故选A.
【点睛】
本题主要考查了菱形的性质、含30°直角三角形的性质、勾股定理等知识点,作出辅助线、求出OE、CE的长度是解答本题的关键.
2、A
【解析】
【分析】
根据翻折的性质,可得BA′与AP的关系,根据线段的和差,可得A′C,根据勾股定理,可得A′C,根据线段的和差,可得答案.
【详解】
解:①在长方形纸片ABCD中,AB=12,AD=20,
∴BC=AD=20,
当p与B重合时,BA′=BA=12,
CA′=BC-BA′=20-12=8,
②当Q与D重合时,
由折叠得A′D=AD=20,
由勾股定理,得
CA′==16,
CA′最远是16,CA′最近是8,点A′在BC边上可移动的最大距离为16-8=8,
故选:A.
【点睛】
本题考查了矩形的性质,翻折变换,利用了翻折的性质,勾股定理,分类讨论是解题关键.
3、B
【解析】
略
4、C
【解析】
【分析】
利用直角三角形斜边上的中线的性质即可判定①正确;利用含30度角的直角三角形的性质即可判定②正确,由勾股定理即可判定③错误;由等边三角形的判定及性质、三角形中位线定理即可判定④正确.
【详解】
∵CM、BN分别是高
∴△CMB、△BNC均是直角三角形
∵点P是BC的中点
∴PM、PN分别是两个直角三角形斜边BC上的中线
∴
故①正确
∵∠BAC=60゜
∴∠ABN=∠ACM=90゜−∠BAC=30゜
∴AB=2AN,AC=2AM
∴AN:AB=AM:AC=1:2
即②正确
在Rt△ABN中,由勾股定理得:
故③错误
当∠ABC=60゜时,△ABC是等边三角形
∵CM⊥AB,BN⊥AC
∴M、N分别是AB、AC的中点
∴MN是△ABC的中位线
∴MN∥BC
故④正确
即正确的结论有①②④
故选:C
【点睛】
本题考查了直角三角形斜边上中线的性质,含30度角的直角三角形的性质,等边三角形的判定及性质,勾股定理,三角形中位线定理等知识,掌握这些知识并正确运用是解题的关键.
5、B
【解析】
【分析】
根据两条对角线平分且相等的四边形是矩形,四条边都相等的四边形是菱形,如果对角线互相垂直平分且相等,那么这个四边形是正方形进行判断即可.
【详解】
解:①一组对边相等的四边形不一定是矩形,错误;
②两条对角线相等的平行四边形是矩形,错误;
③四条边都相等且对角线互相垂直的四边形是菱形,错误;
④四条边都相等的四边形是菱形,正确;
⑤一组邻边相等的矩形是正方形,正确.
故选:B.
【点睛】
此题考查考查平行四边形、矩形、菱形、正方形的判定方法,关键是根据矩形、正方形、菱形的判定解答.
6、C
【解析】
【分析】
根据三角形中位线定理即可求出.
【详解】
解:中,、分别是、的中点,
为三角形的中位线,
,
,
故选:C.
【点睛】
本题考查的是三角形中位线定理的应用,解题的关键是掌握三角形的中位线等于第三边的一半.
7、B
【解析】
【分析】
先判断重叠部分的形状,然后设DD'=x,进而表示D'C等相关的线段,最后通过重叠部分的面积列出方程求出x的值即可得到答案.
【详解】
解:∵四边形ABCD是正方形,
∴△ABD和△BCD是等腰直角三角形,
如图,记A'D'与BD的交点为点E,B'D'与BC的交点为F,
由平移的性质得,△DD'E和△D'CF为等腰直角三角形,
∴重叠部分的四边形D'EBF为平行四边形,
设DD'=x,则D'C=6-x,D'E=x,
∴S▱D'EBF=D'E•D'C=(6-x)x=4,
解得:x=3+或x=3-,
故选:B.
【点睛】
本题考查了正方形的性质、等腰直角三角形的性质、平移的性质,通过平移的性质得到重叠部分四边形的形状是解题的关键.
8、C
【解析】
【分析】
根据平行四边形的判定逐项分析即可得.
【详解】
解:A、两组对边分别平行的四边形是平行四边形,正确,则此项不符合题意;
B、两组对边分别相等的四边形是平行四边形,正确,则此项不符合题意;
C、一组对边平行,另一组对边相等的四边形可能是平行四边形,也可能是等腰梯形,故原命题错误,此项符合题意;
D、对角线互相平分的四边形是平行四边形,正确,则此项不符合题意,
故选:C.
【点睛】
本题考查了平行四边形的判定,熟记平行四边形的判定是解题关键.
9、D
【解析】
【分析】
正确的命题是真命题,根据定义解答.
【详解】
解:A. 三角形的外心是三角形三条边垂直平分线的交点,故该项不符合题意;
B. 满足的三个正整数,,是勾股数,故该项不符合题意;
C. 对角线相等的四边形各边中点连线所得四边形是菱形,故该项不符合题意;
D. 五边形的内角和为,故该项符合题意;
故选:D.
【点睛】
此题考查了真命题的定义,正确掌握三角形外心的定义,勾股数的定义,中点四边形的判定定理及多边形内角和的计算公式是解题的关键.
10、D
【解析】
略
二、填空题
1、28
【解析】
【分析】
由全等三角形的性质可证△AOM≌△CON,可得AO=CO,由等腰三角形的性质可得BO⊥AC,即可求解.
【详解】
解:∵四边形ABCD是菱形,
∴AB//CD,AB=BC,BC//AD,
∴∠MAO=∠NCO,∠BCA=∠CAD.
在△AOM和△CON中,
,
∴△AOM≌△CON(AAS),
∴AO=CO,
又∵AB=BC,
∴BO⊥AC,
∴∠BCO=90°﹣∠OBC=28°=∠DAC.
故答案为:28.
【点睛】
本题考查了菱形的性质,等腰三角形的性质,全等三角形的判定和性质,掌握菱形的性质是本题的关键.
2、
【解析】
【分析】
如图,连接BE、BE′,根据矩形的性质和旋转变换的性质可得:AD′=AD=3,∠AD′E=∠D=90°,利用勾股定理可得BD′=4,再运用等面积法可得:AB•AD=AE•BD′,求出AE=,再运用勾股定理即可求得答案.
【详解】
解:如图,连接BE、BE′,
∵矩形ABCD中,AD=3,AB=5,
∴∠D=90°,
由旋转知,△AD′E′≌△ADE,
∴AD′=AD=3,∠AD′E=∠D=90°,
∵D′E′的延长线恰好经过点B,
∴∠AD′B=90°,
在Rt△ABD′中,BD′===4,
∵S△ABE=AB•AD=AE•BD′,
∴AE===,
在Rt△ADE中,DE===,
故答案为:.
【点睛】
本题考查矩形的性质、旋转性质、勾股定理、三角形的面积,熟练掌握矩形性质和旋转性质,会利用等面积法求解是解答的关键.
3、 平行 对角线 AC BD 对边 对角
【解析】
略
4、
【解析】
【分析】
根据菱形的性质证得△ABD是等边三角形,得到OB,利用勾股定理求出OA,由菱形的性质求出菱形的面积.
【详解】
解:如图所示:
在菱形中,,其所对的对角线长为2,
,,,,
是等边三角形,
则,
故,
则,故,
则菱形的面积.
故答案为:.
【点睛】
此题主要考查了菱形的性质以及勾股定理,正确得出菱形的另一条对角线的长是解题关键.
5、540°
【解析】
【分析】
根据n边形的内角和公式(n-2)·180°求解即可.
【详解】
解:五边形内角和为(5-2)×180°=540°,
故答案为:540°.
【点睛】
本题考查多边形的内角和,熟记多边形的内角和公式是解答的关键.
三、解答题
1、 (1)7
(2)见解析
【解析】
【分析】
(1)根据平行四边形的性质,可得AB∥CD,AB=CD,可得∠EBF=∠CFB,再由∵FB平分,可得∠EFB=∠EBF,从而得到BE=EF=5,即可求解;
(2)再CF上截取FN=FG,可得,从而得到∠BGF=∠BNF,再由∠GBF=∠EFD,可得到∠BFD=∠BNC,再根据BC⊥BD,∠BCD=45°,可得BC=BD,从而证得△BDF≌△BCN,进而得到NC=FD,即可求证.
(1)
解:在中,AB∥CD,AB=CD,
∴∠EBF=∠CFB,
∵FB平分,
∴∠EFB=∠CFB,
∴∠EFB=∠EBF,
∴BE=EF=5,
∵AE=2,
∴CD=AB=AE+BE=7;
(2)
证明:如图,再CF上截取FN=FG,
∵,
∴ ,
∴∠BGF=∠BNF,
∵ ,∠BFG+∠BGF+∠GBF=180°,∠GBF=∠EFD,
∴∠BGF=∠BFN,
∴∠BFN=∠BNF,
∴∠BFD=∠BNC,
∵BC⊥BD,
∴∠CBD=90°,
∵∠BCD=45°,
∴∠BDC=∠BCD=45°,
∴BC=BD,
∴△BDF≌△BCN(AAS),
∴NC=FD,
∴CD=DF+FN+CN=2FD+FG,
∵AB=CD,
∴FG+2FD=AB.
【点睛】
本题主要考查了平行四边形的性质,全等三角形的判定和性质,等腰三角形的性质,熟练掌握平行四边形的性质,全等三角形的判定和性质,等腰三角形的性质是解题的关键.
2、(1)①;②;=;(2)①(n-1)+(n-2)+(n-3)+……+1;②;(n-1)+(n-2)+(n-3)+……+1=;(3)①8000968;②119,n(n-3)
【解析】
【分析】
(1)①根据边长为(a+b)的正方形面积公式求解即可;
②利用矩形和正方形的面积公式求解即可;
(2)①根据题中的数据求和即可;
②根据题意求解即可;
(3)①利用(1)的规律求解即可;
②根据n边形从一个顶点出发可引出(n-3)条对角线.从n个顶点出发引出(n-3)条,而每条重复一次,所以n边形对角线的总条数为n(n-3)(n≥3,且n为整数)可得答案.
【详解】
解:(1)①大正方形的面积为;
②由2个大小不同的正方形和2个大小相同的小长方形组成的图形的面积为;
可以得到等式:=;
故答案为:①;②;=;
(2)①图中锐角的总个数是:(n-1)+(n-2)+(n-3)+……+1;
②锐角的总个数是n(n-1);
可以得到等式为(n-1)+(n-2)+(n-3)+……+1=n(n-1);
故答案为:①(n-1)+(n-2)+(n-3)+……+1;②n(n-1);(n-1)+(n-2)+(n-3)+……+1=n(n-1);
(3)①19782+20222=[2000+(-22)]2+(2000+22)2
=20002+(-22)2+2×2000×(-22)+20002+222+2×2000×22
=2×(20002+222)
=2×[4000000+(20+2)2]
=2×[4000000+(202+22+2×20×2)]=8000968;
②一个四边形共有2条对角线,即×4×(4-3)=2;
一个五边形共有5条对角线,即×5×(5-3)=5;
一个六边形共有9条对角线,即×6×(6-3)=9;
……,
一个十七边形共有×17×(17-3)=119条对角线;
一个n边形共有n(n-3)(n≥3,且n为整数)条对角线.
故答案为:119,n(n-3).
【点睛】
本题考查了图形的变化规律,完全平方公式,多边形的对角线,对于这种图形的变化规律的问题,读懂题目信息,找到变化规律是解题的关键.
3、 (1)(10,8)
(2)D(0,5),E(4,8)
【解析】
【分析】
(1)根据,,可得点的坐标;
(2)根据折叠的性质,可得AE=AO,OD=ED,根据勾股定理,可得EB的长,根据线段的和差,可得CE的长,可得E点坐标;再根据勾股定理,可得OD的长,可得D点坐标;
(1)
解:∵,,
∴点的坐标(10,8),
故答案为:(10,8);
(2)
解:依题意可知,折痕AD是四边形OAED的对称轴,
在Rt△ABE中,AE=AO=10,AB=OC=8,
由勾股定理,得BE= =6,
CE=BC-BE=10-6=4,E(4,8).
在Rt△DCE中,由勾股定理,得DC2+CE2=DE2,
又∵DE=OD,CD=8-OD,
(8-OD)2+42=OD2,
解得OD=5,D(0,5).
所以D(0,5),E(4,8);
【点睛】
本题主要考查了、矩形的性质、翻折变换、勾股定理等知识点,熟知折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等是解答此题的关键.
4、 (1)见解析
(2)画图见解析,
【解析】
【分析】
(1)作出腰为5且∠ABC是钝角的等腰三角形ABC即可;
(2)作出边长分别为5,3的矩形ABDE即可.
(1)
解:如图,AB==BC,∠ABC>90°,所以△ABC即为所求;
(2)
解:如图,矩形BCDE即为所求.AE= .
故答案为:.
【点睛】
本题考查作图-应用与设计作图,等腰三角形的判定,矩形的判定,勾股定理等知识,解题的关键是学会利用数形结合的思想解决问题,属于中考常考题型.
5、 (1)AE=t,AD=12﹣2t,DF=t
(2)见解析
(3)3,理由见解析
【解析】
【分析】
(1)根据题意用含t的式子表示AE、CD,结合图形表示出AD,根据直角三角形的性质表示出DF;
(2)根据对边平行且相等的四边形是平行四边形证明;
(3)根据矩形的定义列出方程,解方程即可.
(1)
解:由题意得,AE=t,CD=2t,
则AD=AC﹣CD=12﹣2t,
∵DF⊥BC,∠C=30°,
∴DF=CD=t;
(2)
解:∵∠ABC=90°,DF⊥BC,
∴,
∵AE=t,DF=t,
∴AE=DF,
∴四边形AEFD是平行四边形;
(3)
解:当t=3时,四边形EBFD是矩形,
理由如下:∵∠ABC=90°,∠C=30°,
∴AB=AC=6cm,
∵,
∴BE=DF时,四边形EBFD是平行四边形,即6﹣t=t,
解得,t=3,
∵∠ABC=90°,
∴四边形EBFD是矩形,
∴t=3时,四边形EBFD是矩形.
【点睛】
此题考查了30度角的性质,平行四边形的判定及性质,矩形的定义,一元一次方程,三角形与动点问题,熟练掌握四边形的知识并综合应用是解题的关键.
相关试卷
这是一份冀教版八年级下册第二十二章 四边形综合与测试课后练习题,共28页。试卷主要包含了下列命题错误的是,下列命题是真命题的有个.,下列说法错误的是等内容,欢迎下载使用。
这是一份冀教版八年级下册第二十二章 四边形综合与测试精品精练,共33页。
这是一份初中数学冀教版八年级下册第二十二章 四边形综合与测试优秀课时训练,共31页。试卷主要包含了下列说法错误的是,下列说法不正确的是等内容,欢迎下载使用。