搜索
    上传资料 赚现金
    英语朗读宝

    2022年最新强化训练冀教版八年级数学下册第二十二章四边形难点解析试题(含答案解析)

    2022年最新强化训练冀教版八年级数学下册第二十二章四边形难点解析试题(含答案解析)第1页
    2022年最新强化训练冀教版八年级数学下册第二十二章四边形难点解析试题(含答案解析)第2页
    2022年最新强化训练冀教版八年级数学下册第二十二章四边形难点解析试题(含答案解析)第3页
    还剩29页未读, 继续阅读
    下载需要20学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    冀教版八年级下册第二十二章 四边形综合与测试精品达标测试

    展开

    这是一份冀教版八年级下册第二十二章 四边形综合与测试精品达标测试,共32页。试卷主要包含了下列命题不正确的是,已知等内容,欢迎下载使用。
    八年级数学下册第二十二章四边形难点解析
    考试时间:90分钟;命题人:数学教研组
    考生注意:
    1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
    2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
    3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
    第I卷(选择题 30分)
    一、单选题(10小题,每小题3分,共计30分)
    1、小明想判断家里的门框是否为矩形,他应该( )
    A.测量三个角是否都是直角 B.测量对角线是否互相平分
    C.测量两组对边是否分别相等 D.测量一组对角是否是直角
    2、在锐角△ABC中,∠BAC=60°,BN、CM为高,P为BC的中点,连接MN、MP、NP,则结论:①NP=MP;②AN:AB=AM:AC;③BN=2AN;④当∠ABC=60°时,MN∥BC,一定正确的有( )

    A.①②③ B.②③④ C.①②④ D.①④
    3、如图,已知长方形,,分别是,上的点,,分别是,的中点,当点在上从点向点移动,而点不动时,那么下列结论成立的是( )

    A.线段的长逐渐增大 B.线段的长逐渐减少
    C.线段的长不变 D.线段的长先增大后变小
    4、下列命题不正确的是( )
    A.三边对应相等的两三角形全等
    B.若,则
    C.有一组对边平行、另一组对边相等的四边形是平行四边形
    D.的三边为a、b、c,若,则是直角三角形.
    5、如图,任意四边形ABCD中,E,F,G,H分别是各边上的点,对于四边形E,F,G,H的形状,小聪进行了探索,下列结论错误的是(   )

    A.E,F,G,H是各边中点.且AC=BD时,四边形EFGH是菱形
    B.E,F,G,H是各边中点.且AC⊥BD时,四边形EFGH是矩形
    C.E,F,G,H不是各边中点.四边形EFGH可以是平行四边形
    D.E,F,G,H不是各边中点.四边形EFGH不可能是菱形
    6、已知:在△ABC中,AC=BC,点D、E分别是边AB、AC的中点,延长DE至点F,使得EF=DE,那么四边形AFCD一定是( )
    A.菱形 B.矩形 C.直角梯形 D.等腰梯形
    7、如图,平行四边形ABCD,∠BCD=120°,AB=2,BC=4,点E是直线BC上的点,点F是直线CD上的点,连接AF,AE,EF,点M,N分别是AF,EF的中点.连接MN,则MN的最小值为( )

    A.1 B. C. D.
    8、如图,已知菱形OABC的顶点O(0,0),B(2,2),菱形的对角线的交于点D;若将菱形OABC绕点O逆时针旋转,每秒旋转45°,从如图所示位置起,经过60秒时,菱形的对角线的交点D的坐标为( )

    A.(1,1) B.(﹣1,﹣1) C.(-1,1) D.(1,﹣1)
    9、如图,在正方形ABCD中,对角线AC与BD相交于点O,E为BC上一点,CE=6,F为DE的中点.若OF的长为1,则△CEF的周长为( )

    A.14 B.16 C.18 D.12
    10、如图,为了测量一块不规则绿地B,C两点间的距离,可以在绿地的一侧选定一点A,然后测量出AB,AC的中点D,E,如果测量出D,E两点间的距离是8m,那么绿地B,C两点间的距离是(  )

    A.4m B.8m C.16m D.20m
    第Ⅱ卷(非选择题 70分)
    二、填空题(5小题,每小题4分,共计20分)
    1、如图,在长方形ABCD中,,,P为AD上一点,将沿BP翻折至,PE与CD相交于点O,且,则AP的长为______.

    2、如图,在平行四边形ABCD中,对角线AC,BD交于点O,AC⊥AB,AB=,且AC:BD=2:3,那么AC的长为___.

    3、从八边形的一个顶点引出的对角线有_____条.
    4、如图,四边形ABFE、AJKC、BCIH分别是以Rt△ABC的三边为一边的正方形,过点C作AB的垂线,交AB于点D,交FE于点G,连接HA、CF.欧几里得编纂的《原本》中收录了用该图形证明勾股定理的方法.关于该图形的下面四个结论:
    ①△ABH≌△FBC;
    ②正方形BCIH的面积=2△ABH的面积;
    ③矩形BFGD的面积=2△ABH的面积;
    ④BD2+AD2+CD2=BF2.
    正确的有 ______.(填序号)

    5、如图所示,是长方形地面,长,宽,中间竖有一堵砖墙高.一只蚂蚱从点爬到点,它必须翻过中间那堵墙,则它至少要走______的路程.

    三、解答题(5小题,每小题10分,共计50分)
    1、如图,在中,,,E、F分别为AB、CD边上两点,FB平分.

    (1)如图1,若,,求CD的长;
    (2)如图2,若G为EF上一点,且,求证:.
    2、(1)【发现证明】
    如图1,在正方形中,点,分别是,边上的动点,且,求证:.小明发现,当把绕点顺时针旋转90°至,使与重合时能够证明,请你给出证明过程.
    (2)【类比引申】
    ①如图2,在正方形中,如果点,分别是,延长线上的动点,且,则(1)中的结论还成立吗?若不成立,请写出,,之间的数量关系______(不要求证明)
    ②如图3,如果点,分别是,延长线上的动点,且,则,,之间的数量关系是______(不要求证明)
    (3)【联想拓展】如图1,若正方形的边长为6,,求的长.

    3、如图,在四边形ABCD中,AB=AD,AD//BC

    (1)在图中,用尺规作线段BD的垂直平分线EF,分别交BD、BC于点E、F.(保留作图痕迹,不写作法)
    (2)连接DF,证明四边形ABFD为菱形.
    4、如图所示,在每个小正方形的边长均为1的网格中,线段AB的端点A、B均在小正方形的顶点上.

    (1)在图中画出等腰△ABC,且△ABC为钝角三角形,点C在小正方形顶点上;
    (2)在(1)的条件下确定点C后,再画出矩形BCDE,D,E都在小正方形顶点上,且矩形BCDE的周长为16,直接写出EA的长为   .
    5、已知:线段m.
    求作:矩形ABCD,使矩形宽AB=m,对角线AC=m.


    -参考答案-
    一、单选题
    1、A
    【解析】
    【分析】
    根据矩形的判定方法解题.
    【详解】
    解:A、三个角都是直角的四边形是矩形,
    选项A符合题意;
    B、对角线互相平分的四边形是平行四边形,
    选项B不符合题意,
    C、两组对边分别相等的四边形是平行四边形,
    选项C不符合题意;
    D、一组对角是直角的四边形不是矩形,
    选项D不符合题意;
    故选:A.
    【点睛】
    本题考查矩形的判定方法,是重要考点,掌握相关知识是解题关键.
    2、C
    【解析】
    【分析】
    利用直角三角形斜边上的中线的性质即可判定①正确;利用含30度角的直角三角形的性质即可判定②正确,由勾股定理即可判定③错误;由等边三角形的判定及性质、三角形中位线定理即可判定④正确.
    【详解】
    ∵CM、BN分别是高
    ∴△CMB、△BNC均是直角三角形
    ∵点P是BC的中点
    ∴PM、PN分别是两个直角三角形斜边BC上的中线

    故①正确
    ∵∠BAC=60゜
    ∴∠ABN=∠ACM=90゜−∠BAC=30゜
    ∴AB=2AN,AC=2AM
    ∴AN:AB=AM:AC=1:2
    即②正确
    在Rt△ABN中,由勾股定理得:
    故③错误
    当∠ABC=60゜时,△ABC是等边三角形
    ∵CM⊥AB,BN⊥AC
    ∴M、N分别是AB、AC的中点
    ∴MN是△ABC的中位线
    ∴MN∥BC
    故④正确
    即正确的结论有①②④
    故选:C
    【点睛】
    本题考查了直角三角形斜边上中线的性质,含30度角的直角三角形的性质,等边三角形的判定及性质,勾股定理,三角形中位线定理等知识,掌握这些知识并正确运用是解题的关键.
    3、C
    【解析】
    【分析】
    因为R不动,所以AR不变.根据三角形中位线定理可得EF=AR,因此线段EF的长不变.
    【详解】
    解:连接.

    、分别是、的中点,
    为的中位线,
    ,为定值.
    线段的长不改变.
    故选:.
    【点睛】
    本题考查了三角形的中位线定理,只要三角形的边AR不变,则对应的中位线的长度就不变.
    4、C
    【解析】
    【分析】
    根据三角形全等的判定定理(定理)、乘方运算法则、平行四边形的判定、勾股定理的逆定理逐项判断即可得.
    【详解】
    解:A、三边对应相等的两三角形全等,此命题正确,不符题意;
    B、若,则,此命题正确,不符题意;
    C、有一组对边平行、另一组对边相等的四边形有可能是等腰梯形,不一定是平行四边形,所以此项命题不正确,符合题意;
    D、的三边为、、,若,即,则是直角三角形,此命题正确,不符题意;
    故选:C.
    【点睛】
    本题考查了三角形全等的判定定理、乘方运算法则、平行四边形的判定、勾股定理的逆定理,熟练掌握各定理是解题关键.
    5、D
    【解析】
    【分析】
    当为各边中点,,,四边形是平行四边形;A中AC=BD,则,平行四边形为菱形,进而可判断正误;B中AC⊥BD,则,平行四边形为矩形,进而可判断正误;E,F,G,H不是各边中点,C中若四点位置满足,则可知四边形EFGH可以是平行四边形,进而可判断正误;D中若四点位置满足,则可知四边形EFGH可以是菱形,进而可判断正误.
    【详解】
    解:如图,连接当为各边中点时,可知分别为的中位线


    ∴四边形是平行四边形
    A中AC=BD,则,平行四边形为菱形;正确,不符合题意;
    B中AC⊥BD,则,平行四边形为矩形;正确,不符合题意;
    C中E,F,G,H不是各边中点,若四点位置满足,则可知四边形EFGH可以是平行四边形;正确,不符合题意;
    D中若四点位置满足,则可知四边形EFGH可以是菱形;错误,符合题意;
    故选D.
    【点睛】
    本题考查了平行四边形、菱形、矩形的判定,中位线等知识.解题的关键在于熟练掌握特殊平行四边形的判定.
    6、B
    【解析】
    【分析】
    先证明四边形ADCF是平行四边形,再证明AC=DF即可.
    【详解】
    解:∵E是AC中点,
    ∴AE=EC,
    ∵DE=EF,
    ∴四边形ADCF是平行四边形,
    ∵AD=DB,AE=EC,
    ∴DE=BC,
    ∴DF=BC,
    ∵CA=CB,
    ∴AC=DF,
    ∴四边形ADCF是矩形;
    故选:B.

    【点睛】
    本题考查了矩形的判定、等腰三角形的性质、平行四边形的判定、三角形中位线定理;熟记对角线相等的平行四边形是矩形是解决问题的关键.
    7、C
    【解析】
    【分析】
    先证明NM为△AEF的中位线,根据中位线性质得出MN=,可得AE最小时,MN最小,根据点E在直线BC上,根据点到直线的距离最短得出AE⊥BC时AE最短,根据在平行四边形ABCD中,∠BCD=120°,求出∠ABC=180°-∠BCD=180°-120°=60°,利用三角形内角和∠BAE=180°-∠ABE-∠AEB=180°-60°-90°=30°,利用30°直角三角形性质得出BE=,再利用勾股定理求出AE即可.
    【详解】
    解:∵M为FA中点,N为FE中点,
    ∴NM为△AEF的中位线,
    ∴MN=
    ∴AE最小时,MN最小,
    ∵点E在直线BC上,
    根据点A到直线BC的距离最短,
    ∴AE⊥BC时AE最短,
    ∵在平行四边形ABCD中,∠BCD=120°,
    ∴∠ABC+∠BCD=180°,
    ∴∠ABC=180°-∠BCD=180°-120°=60°,
    ∴∠BAE=180°-∠ABE-∠AEB=180°-60°-90°=30°,
    在Rt△ABE中,∠BAE=30°,AB=2,
    ∴BE=,
    根据勾股定理AE最小值=,
    ∴MN=.
    故选择C.
    【点睛】
    本题考查三角形中位线性质,平行四边形性质,点到直线距离,三角形内角和,30°直角三角形性质,勾股定理,掌握三角形中位线性质,平行四边形性质,点到直线距离,三角形内角和,30°直角三角形性质,勾股定理是解题关键.
    8、B
    【解析】
    【分析】
    分别过点和点作轴于点,作轴于点,根据菱形的性质以及中位线的性质求得点的坐标,进而计算旋转的度数,7.5周,进而根据中心对称求得点旋转后的D坐标
    【详解】
    如图,分别过点和点作轴于点,作轴于点,

    ∴,
    ∵四边形为菱形,
    ∴点为的中点,
    ∴点为的中点,
    ∴,,
    ∵,
    ∴;
    由题意知菱形绕点逆时针旋转度数为:,
    ∴菱形绕点逆时针旋转周,
    ∴点绕点逆时针旋转周,
    ∵,
    ∴旋转60秒时点的坐标为.
    故选B
    【点睛】
    根据菱形的性质及中点的坐标公式可得点D坐标,再根据旋转的性质可得旋转后点D的坐标,熟练掌握菱形的性质及中点的坐标公式、中心对称的性质是解题的关键.
    9、B
    【解析】
    【分析】
    根据中位线的性质及直角三角形斜边上中线的性质可得:,结合图形得出的周长为,再由中位线的性质得出,在中,利用勾股定理确定,即可得出结论.
    【详解】
    解:在正方形ABCD中,,,,
    ∵F为DE的中点,O为BD的中点,
    ∴OF为的中位线且CF为斜边上的中线,
    ∴,
    ∴的周长为,
    ∵,
    ∴,
    ∵,
    ∴,
    ∴,
    在中,,,,
    ∴,
    ∴的周长为,
    故选:B.
    【点睛】
    题目主要考查正方形的性质,三角形中位线的性质,勾股定理,直角三角形斜边中线的性质等,理解题意,熟练掌握运用各个知识点是解题关键.
    10、C
    【解析】
    【分析】
    根据三角形中位线定理即可求出.
    【详解】
    解:中,、分别是、的中点,
    为三角形的中位线,


    故选:C.
    【点睛】
    本题考查的是三角形中位线定理的应用,解题的关键是掌握三角形的中位线等于第三边的一半.
    二、填空题
    1、##
    【解析】
    【分析】
    证明,根据全等三角形的性质得到,,根据翻折变换的性质用表示出、,根据勾股定理列出方程,解方程即可.
    【详解】
    解:四边形是矩形,
    ,,,
    由折叠的性质可知,
    ,,,
    在和中,


    ,,

    设,则,,
    ,,
    根据勾股定理得:,
    即,
    解得:,

    故答案为:.
    【点睛】
    本题考查的是翻折变换的性质,矩形的性质,全等三角形的判定与性质和勾股定理的应用,解题的关键是熟练掌握翻折变换的性质.
    2、4
    【解析】
    【分析】
    四边形是平行四边形,可得,由,可知,由可知在中勾股定理求解的值,进而求解的值.
    【详解】
    解:∵四边形是平行四边形





    ∴设

    解得:


    故答案为:4.
    【点睛】
    本题考查了勾股定理,平行四边形的性质等知识.解题的关键在于正确的求解.
    3、
    【解析】
    【分析】
    根据n边形从一个顶点出发可引出(n﹣3)条对角线可直接得到答案.
    【详解】
    解:从八边形的一个顶点可引出的对角线的条数有8﹣3=5(条),
    故答案为:5.
    【点睛】
    此题主要考查了多边形的对角线,关键是掌握计算方法.
    4、①②③
    【解析】
    【分析】
    由“SAS”可证△ABH≌△FBC,故①正确;由平行线间的距离处处相等,可得S△ABH=S△BCH=S正方形BCIH,故②正确;同理可证矩形BFGD的面积=2△ABH的面积,故③正确;由勾股定理可得BD2+AD2+2CD2=BF2,故④错误,即可求解.
    【详解】
    解:∵四边形ABFE和四边形CBHI是正方形,
    ∴AB=FB,HB=CB,∠ABF=∠CBH=90°,
    ∴∠CBF=∠HBA,
    ∴△ABH≌△FBC(SAS),故①正确;
    如图,连接HC,

    ∵AI∥BH,
    ∴S△ABH=S△BCH=S正方形BCIH,
    ∴正方形BCIH的面积=2△ABH的面积,故②正确;
    ∵CG∥BF,
    ∴S△CBF=×BF×BD=S矩形BDGF,
    ∴矩形BFGD的面积=2△ABH的面积,故③正确;
    ∵BC2=CD2+DB2,AC2=CD2+AD2,BC2+AC2=AB2,
    ∴BD2+CD2+CD2+AD2=AB2=BF2,
    ∴BD2+AD2+2CD2=BF2,故④错误,
    故答案为:①②③.
    【点睛】
    本题考查了正方形的性质,全等三角形的判定和性质,平行线的性质,勾股定理等知识,灵活运用这些性质解决问题是解题的关键.
    5、
    【解析】
    【分析】
    根据题意,将长方形底面和中间墙展开为平面图,并连接BD,根据两点之间直线段最短和勾股定理的性质计算,即可得到答案.
    【详解】
    将长方形底面和中间墙展开后的平面图如下,并连接BD

    根据题意,展开平面图中的
    ∴一只蚂蚱从点爬到点,最短路径长度为展开平面图中BD长度
    ∵是长方形地面


    故答案为:.
    【点睛】
    本题考查了立体图形展开图、矩形、两点之间直线段最短、勾股定理的知识;解题的关键是熟练掌握立体图形展开图、勾股定理的知识,从而完成求解.
    三、解答题
    1、 (1)7
    (2)见解析
    【解析】
    【分析】
    (1)根据平行四边形的性质,可得AB∥CD,AB=CD,可得∠EBF=∠CFB,再由∵FB平分,可得∠EFB=∠EBF,从而得到BE=EF=5,即可求解;
    (2)再CF上截取FN=FG,可得,从而得到∠BGF=∠BNF,再由∠GBF=∠EFD,可得到∠BFD=∠BNC,再根据BC⊥BD,∠BCD=45°,可得BC=BD,从而证得△BDF≌△BCN,进而得到NC=FD,即可求证.
    (1)
    解:在中,AB∥CD,AB=CD,
    ∴∠EBF=∠CFB,
    ∵FB平分,
    ∴∠EFB=∠CFB,
    ∴∠EFB=∠EBF,
    ∴BE=EF=5,
    ∵AE=2,
    ∴CD=AB=AE+BE=7;
    (2)
    证明:如图,再CF上截取FN=FG,

    ∵,
    ∴ ,
    ∴∠BGF=∠BNF,
    ∵ ,∠BFG+∠BGF+∠GBF=180°,∠GBF=∠EFD,
    ∴∠BGF=∠BFN,
    ∴∠BFN=∠BNF,
    ∴∠BFD=∠BNC,
    ∵BC⊥BD,
    ∴∠CBD=90°,
    ∵∠BCD=45°,
    ∴∠BDC=∠BCD=45°,
    ∴BC=BD,
    ∴△BDF≌△BCN(AAS),
    ∴NC=FD,
    ∴CD=DF+FN+CN=2FD+FG,
    ∵AB=CD,
    ∴FG+2FD=AB.
    【点睛】
    本题主要考查了平行四边形的性质,全等三角形的判定和性质,等腰三角形的性质,熟练掌握平行四边形的性质,全等三角形的判定和性质,等腰三角形的性质是解题的关键.
    2、(1)见解析;(2)①不成立,结论:;②,见解析;(3)
    【解析】
    【分析】
    (1)证明,可得出,则结论得证;
    (2)①将绕点顺时针旋转至根据可证明,可得,则结论得证;②将绕点逆时针旋转至,证明,可得出,则结论得证;
    (3)求出,设,则,,在中,得出关于的方程,解出则可得解.
    【详解】
    (1)证明:把绕点顺时针旋转至,如图1,

    ,,,

    ,,三点共线,








    (2)①不成立,结论:;
    证明:如图2,将绕点顺时针旋转至,

    ,,,,




    ②如图3,将绕点逆时针旋转至,

    ,,







    即.
    故答案为:.
    (3)解:由(1)可知,

    正方形的边长为6,




    设,则,,
    在中,


    解得:.


    【点睛】
    本题属于四边形综合题,主要考查了正方形的性质、旋转的性质、全等三角形的判定与性质以及勾股定理的综合应用,解题的关键是作辅助线构造全等三角形,根据全等三角形的对应边相等进行推导.
    3、 (1)见解析
    (2)见解析
    【解析】
    【分析】
    (1)直接利用线段垂直平分线的作法得出答案;
    (2)结合垂直平分线的性质得出△ADE≌△FBE,即可得出AE=EF,进而利用菱形的判定方法得出答案.
    (1)
    (1)如图:EF即为所求作

    (2)
    证明:如图,连接DF,
    ∵AD//BC,
    ∴∠ADE=∠EBF,
    ∵AF垂直平分BD,
    ∴BE=DE.
    在△ADE和△FBE中,

    ∴△ADE≌△FBE(ASA),
    ∴AE=EF,
    ∴BD与AF互相垂直且平分,
    ∴四边形ABFD为菱形.
    【点睛】
    此题主要考查了菱形的判定以及线段垂直平分线的性质与作法,正确应用线段垂直平分线的性质是解题关键.
    4、 (1)见解析
    (2)画图见解析,
    【解析】
    【分析】
    (1)作出腰为5且∠ABC是钝角的等腰三角形ABC即可;
    (2)作出边长分别为5,3的矩形ABDE即可.
    (1)
    解:如图,AB==BC,∠ABC>90°,所以△ABC即为所求;

    (2)
    解:如图,矩形BCDE即为所求.AE= .
    故答案为:.
    【点睛】
    本题考查作图-应用与设计作图,等腰三角形的判定,矩形的判定,勾股定理等知识,解题的关键是学会利用数形结合的思想解决问题,属于中考常考题型.
    5、见详解
    【解析】
    【分析】
    先作m的垂直平分线,取m的一半为AB,然后以点A为圆心,以m长为半径画弧,交m的垂直平分线于C,连结AC,利用作一个角等于已知角,过A作BC的平行线AD,过C作AB的平行线CD,两线交于D即可.
    【详解】
    解:先作m的垂直平分线,取m的一半为AB,
    以点A为圆心,以m长为半径画弧,交m的垂直平分线于C,连结AC,
    过A作BC的平行线,与过C作AB的平行线交于D,
    则四边形ABCD为所求作矩形;

    ∵AD∥BC,CD∥AB,
    ∴四边形ABCD为平行四边形,
    ∵BC⊥AB,
    ∴∠ABC=90°,
    ∴四边形ABCD为矩形,
    ∵AB=,AC=m,
    ∴矩形的宽与对角线满足条件,
    ∴四边形ABCD为所求作矩形.
    【点睛】
    本题考查矩形作图,线段垂直平分线,作线段等于已知线段,平行线作法,掌握矩形作图,线段垂直平分线,作线段等于已知线段,平行线作法是解题关键.

    相关试卷

    冀教版八年级下册第二十二章 四边形综合与测试精品同步测试题:

    这是一份冀教版八年级下册第二十二章 四边形综合与测试精品同步测试题,共27页。试卷主要包含了下列说法不正确的是,下列说法错误的是等内容,欢迎下载使用。

    初中数学冀教版八年级下册第二十二章 四边形综合与测试精品课时作业:

    这是一份初中数学冀教版八年级下册第二十二章 四边形综合与测试精品课时作业,共25页。试卷主要包含了下列命题是真命题的有个.等内容,欢迎下载使用。

    八年级下册第二十二章 四边形综合与测试优秀同步测试题:

    这是一份八年级下册第二十二章 四边形综合与测试优秀同步测试题,共22页。试卷主要包含了下列说法正确的是等内容,欢迎下载使用。

    文档详情页底部广告位
    • 课件
    • 教案
    • 试卷
    • 学案
    • 其他
    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map