![精品试卷冀教版八年级数学下册第二十二章四边形定向训练试题(无超纲)第1页](http://img-preview.51jiaoxi.com/2/3/12735199/0/0.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![精品试卷冀教版八年级数学下册第二十二章四边形定向训练试题(无超纲)第2页](http://img-preview.51jiaoxi.com/2/3/12735199/0/1.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![精品试卷冀教版八年级数学下册第二十二章四边形定向训练试题(无超纲)第3页](http://img-preview.51jiaoxi.com/2/3/12735199/0/2.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
初中数学冀教版八年级下册第二十二章 四边形综合与测试精品课后测评
展开
这是一份初中数学冀教版八年级下册第二十二章 四边形综合与测试精品课后测评,共28页。试卷主要包含了下列关于的叙述,正确的是等内容,欢迎下载使用。
八年级数学下册第二十二章四边形定向训练 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、如图,任意四边形ABCD中,E,F,G,H分别是各边上的点,对于四边形E,F,G,H的形状,小聪进行了探索,下列结论错误的是( )A.E,F,G,H是各边中点.且AC=BD时,四边形EFGH是菱形B.E,F,G,H是各边中点.且AC⊥BD时,四边形EFGH是矩形C.E,F,G,H不是各边中点.四边形EFGH可以是平行四边形D.E,F,G,H不是各边中点.四边形EFGH不可能是菱形2、矩形ABCD的对角线交于点O,∠AOD=120°,AO=3,则BC的长度是( )A.3 B. C. D.63、如图,已知长方形,,分别是,上的点,,分别是,的中点,当点在上从点向点移动,而点不动时,那么下列结论成立的是( )A.线段的长逐渐增大 B.线段的长逐渐减少C.线段的长不变 D.线段的长先增大后变小4、如图,把一长方形纸片ABCD的一角沿AE折叠,点D的对应点落在∠BAC内部.若,且,则∠DAE的度数为( )A.12° B.24° C.39° D.45°5、如图,正方形ABCD的对角线相交于点O,以点O为顶点的正方形OEGF的两边OE,OF分别交正方形ABCD的两边AB,BC于点M,N,记的面积为,的面积为,若正方形的边长,,则的大小为( )A.6 B.7 C.8 D.96、下列关于的叙述,正确的是( )A.若,则是矩形 B.若,则是正方形C.若,则是菱形 D.若,则是正方形7、在Rt△ABC中,∠B=90°,D,E,F分别是边BC,CA,AB的中点,AB=6,BC=8,则四边形AEDF的周长是( )A.18 B.16 C.14 D.128、如图,已知菱形ABCD的边长为2,∠DAB=60°,则对角线BD的长是( )A.1 B.4 C.2 D.69、一个多边形从一个顶点引出的对角线条数是4条,这个多边形的边数是( )A.5 B.6 C.7 D.810、下列选项中,不能被边长为2的正方形及其内部所覆盖的图形是( )A.长度为的线段 B.边长为2的等边三角形C.斜边为2的直角三角形 D.面积为4的菱形第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、如图,翠屏公园有一块长为12m,宽为6m的长方形草坪,绿化部门计划在草坪中间修两条宽度均为2m的石子路(两条石子路的任何地方的水平宽度都是2m),剩余阴影区域计划种植鲜花,则种植鲜花的面积为______m2.2、如图1,在平面直角坐标系xOy中,□ABCD的面积为10,且边AB在x轴上.如果将直线y=﹣x沿x轴正方向平移,在平移过程中,记该直线在x轴上平移的距离为m,直线被平行四边形的边所截得的线段的长度为n,且n与m的对应关系如图2所示,那么图2中a的值是 ___,b的值是 ___.3、(1)两组对边分别________的四边形是平行四边形∵AB∥CD,AD∥BC,∴四边形ABCD是平行四边形 (2)两组对边分别________的四边形是平行四边形∵AB=CD,AD=BC,∴四边形ABCD是平行四边形 (3)两组对角分别________的四边形是平行四边形∵∠A= ∠C, ∠B=∠D,∴四边形ABCD是平行四边形 (4)对角线________的四边形是平行四边形∵AO=CO,BO=DO,∴四边形ABCD是平行四边形 (5)一组对边________的四边形是平行四边形∵AD=BC,AD∥BC,∴四边形ABCD是平行四边形4、如图,在△ABC中,D,E分别是边AB,AC的中点,如果BC=7,那么DE=____.5、如图,菱形中,,,点在边上,且,动点在边上,连接,将线段绕点顺时针旋转至线段,连接,则线段长的最小值为__.三、解答题(5小题,每小题10分,共计50分)1、已知:如图,在▱ABCD中,AE⊥BC,,点E,F分别为垂足.(1)求证:△ABE≌△CDF;(2)求证:四边形AECF是矩形.2、如图,平行四边形ABCD中,∠ADB=90°.(1)求作:AB的垂直平分线MN,交AB于点M,交BD延长线于点N(要求:尺规作图,保留作图痕迹,不写作法,不下结论)(2)在(1)的条件下,设直线MN交AD于E,且∠C=22.5°,求证:NE=AB.3、尺规作图并回答问题:(保留作图痕迹)已知:如图,四边形ABCD是平行四边形.求作:菱形AECF,使点E,F分别在BC,AD上.请回答:在你的作法中,判定四边形AECF是菱形的依据是 .4、在平面直角坐标系中,已知点,,,以点,,为顶点的平行四边形有三个,记第四个顶点分别为,,,如图所示.(1)若,则点,,的坐标分别是( ),( ),( );(2)若△是以为底的等腰三角形,①直接写出的值;②若直线与△有公共点,求的取值范围.(3)若直线与△有公共点,求的取值范围.5、如图所示,在每个小正方形的边长均为1的网格中,线段AB的端点A、B均在小正方形的顶点上.(1)在图中画出等腰△ABC,且△ABC为钝角三角形,点C在小正方形顶点上;(2)在(1)的条件下确定点C后,再画出矩形BCDE,D,E都在小正方形顶点上,且矩形BCDE的周长为16,直接写出EA的长为 . -参考答案-一、单选题1、D【解析】【分析】当为各边中点,,,四边形是平行四边形;A中AC=BD,则,平行四边形为菱形,进而可判断正误;B中AC⊥BD,则,平行四边形为矩形,进而可判断正误;E,F,G,H不是各边中点,C中若四点位置满足,则可知四边形EFGH可以是平行四边形,进而可判断正误;D中若四点位置满足,则可知四边形EFGH可以是菱形,进而可判断正误.【详解】解:如图,连接当为各边中点时,可知分别为的中位线∴∴四边形是平行四边形A中AC=BD,则,平行四边形为菱形;正确,不符合题意;B中AC⊥BD,则,平行四边形为矩形;正确,不符合题意;C中E,F,G,H不是各边中点,若四点位置满足,则可知四边形EFGH可以是平行四边形;正确,不符合题意;D中若四点位置满足,则可知四边形EFGH可以是菱形;错误,符合题意;故选D.【点睛】本题考查了平行四边形、菱形、矩形的判定,中位线等知识.解题的关键在于熟练掌握特殊平行四边形的判定.2、C【解析】【分析】画出图形,由条件可求得△AOB为等边三角形,则可求得AC的长,在Rt△ABC中,由勾股定理可求得BC的长.【详解】解:如下图所示:∵四边形ABCD是矩形,∴∠ABC=90°,OA=AC,OB=BD,AC=BD,∴OA=OB,∵∠AOD=120°,∴∠AOB=60°,∴△AOB是等边三角形,∴OA=AB=2,∴AC=2OA=4,∴BC2=AC2-AB2=36-9=27,∴BC=.故选:D.【点睛】本题考查了矩形的性质、等边三角形的判定与性质以及勾股定理;熟练掌握矩形的性质,证明三角形是等边三角形是解决问题的关键.3、C【解析】【分析】因为R不动,所以AR不变.根据三角形中位线定理可得EF=AR,因此线段EF的长不变.【详解】解:连接.、分别是、的中点,为的中位线,,为定值.线段的长不改变.故选:.【点睛】本题考查了三角形的中位线定理,只要三角形的边AR不变,则对应的中位线的长度就不变.4、C【解析】【分析】由折叠的性质得到,由长方形的性质得到,根据角的和差倍分得到,整理得 ,最后根据解题.【详解】解:折叠,是矩形故选:C.【点睛】本题考查角的计算、折叠性质、数形结合思想等知识,是重要考点,掌握相关知识是解题关键.5、D【解析】【分析】由题意依据全等三角形的判定得出△BOM≌△CON,进而根据正方形的性质即可得出的大小.【详解】解:∵正方形ABCD的对角线AC,BD交于点O,∴OC=OD=BO=AO,∠ABO=∠ACB=45°,AC⊥BD.∵∠MOB+∠BON=90°,∠BON+∠CON=90°∴∠BOM=∠CON,且OC=OB,∠ABO=∠ACB=45°,∴△BOM≌△CON(ASA),=S△BOM,∴,∵=S正方形ABCD,正方形的边长,,∴=S正方形ABCD -=.故选:D.【点睛】本题考查正方形的性质以及全等三角形的判定和性质等知识,灵活运用这些性质进行推理是解答本题的关键.6、A【解析】【分析】由菱形的判定方法、矩形的判定方法、正方形的判定方法得出选项、、错误,正确;即可得出结论.【详解】解:中,,四边形是矩形,选项符合题意;中,,四边形是菱形,不一定是正方形,选项不符合题意;中,,四边形是矩形,不一定是菱形,选项不符合题意;中,,四边形是菱形,选项不符合题意;故选:.【点睛】本题考查了平行四边形的性质、菱形的判定方法、矩形的判定方法、正方形的判定方法;熟练掌握矩形、菱形、正方形的判定方法是解决问题的关键.7、B【解析】略8、C【解析】略9、C【解析】【分析】根据从n边形的一个顶点引出对角线的条数为(n-3)条,可得答案.【详解】解:∵一个n多边形从某个顶点可引出的对角线条数为(n-3)条,而题目中从一个顶点引出4条对角线,∴n-3=4,得到n=7,∴这个多边形的边数是7.故选:C.【点睛】本题考查了多边形的对角线,从一个顶点引对角线,注意相邻的两个顶点不能引对角线.10、D【解析】【分析】先计算出正方形的对角线长,即可逐项进行判定求解.【详解】解:A、正方形的边长为2,对角线长为,长度为的线段能被边长为2的正方形及其内部所覆盖,故不符合题意;B、边长为2的等边三角形能被边长为2的正方形及其内部所覆盖,故不符合题意;C、斜边为2的直角三角形能被边长为2的正方形及其内部所覆盖,故不符合题意;D、而面积为4的菱形对角线长可以为8,故不能被边长为2的正方形及其内部所覆盖,故符合题意,故选:D.【点睛】本题主要考查正方形的性质,等边三角形的性质,菱形的性质等知识,解题的关键是掌握相关图形的特征进行判断.二、填空题1、48【解析】【分析】利用长方形的面积减去石子路的面积,即可求解.【详解】解:根据题意得:种植鲜花的面积为 .故答案为:48【点睛】本题主要考查了求平行四边形的面积,熟练掌握平行四边形的性质是解题的关键.2、 7 【解析】【分析】在图1中,过点D,B,C作直线与已知直线y=﹣x平行,交x轴于点E,F,过D作DG⊥x轴于G,在图2中,取A'(2,0),E'(5,b),B'(a,b),F'(10,0),求出OA=m=2,OE=m=5,DE=n=b,则AE=3,OF=m=10,OB=m=a,根据▱ABCD的面积为10,求出DG=2,得到DE即为b值.【详解】解:在图1中,过点D,B,C作直线与已知直线y=﹣x平行,交x轴于点E,F,过D作DG⊥x轴于G,在图2中,取A'(2,0),E'(5,b),B'(a,b),F'(10,0),图1中点A对应图2中的点A',得出OA=m=2,图1中点E对应图2中的点E',得出OE=m=5,DE=n=b,则AE=3,图1中点F对应图2中的点F',得出OF=m=10,图1中点B对应图2中的点B',得出OB=m=a,∵a=OB=OF﹣BF,BF=AE=3,OF=10∴a=7,∵▱ABCD的面积为10,AB=OB﹣OA=7﹣2=5,∴DG=2,在Rt△DGE中,∠DEG=45°,∴DE==,故答案是:7,.【点睛】此题考查了平行四边形与函数图象的结合,正确掌握平行四边形的性质,直线y=﹣x与坐标轴夹角45度的性质,一次函数图象平行的性质,勾股定理,正确理解函数图象得到相关信息是解题的关键.3、 平行 相等 相等 互相平分 平行且相等【解析】略4、3.5##72【解析】【分析】根据DE是△ABC的中位线,计算求解即可.【详解】解:∵D,E分别是边AB,AC的中点∴DE是△ABC的中位线∴DEBC3.5故答案为:3.5.【点睛】本题考查了中位线.解题的关键在于正确的求值.5、【解析】【分析】在上取一点,使得,连接,,作直线交于,过点作于.证明,推出点在射线上运动,根据垂线段最短可知,当点与重合时,的值最小,求出即可.【详解】解:在上取一点,使得,连接,,作直线交于,过点作于.,,是等边三角形,,,,,是等边三角形,,,,,在和中,,,,,点在射线上运动,根据垂线段最短可知,当点与重合时,的值最小,,,,,,∴GT//AB∵BG//AT四边形是平行四边形,,,∴ 在中, ∴ ,的最小值为,故答案为:.【点睛】本题考查菱形的性质,全等三角形的判定和性质,解直角三角形等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题.三、解答题1、 (1)证明见解析(2)证明见解析【解析】【分析】(1)先根据平行四边形的性质可得,再根据垂直的定义可得,然后根据三角形全等的判定定理(定理)即可得证;(2)先根据平行四边形的性质可得,再根据平行线的性质可得,然后根据矩形的判定即可得证.(1)证明:四边形是平行四边形,,,,在和中,,.(2)证明:,,四边形是平行四边形,,,在四边形中,,四边形是矩形.【点睛】本题考查了平行四边形的性质、三角形全等的判定定理、矩形的判定等知识点,熟练掌握各判定定理与性质是解题关键.2、 (1)见解析(2)见解析【解析】【分析】(1)根据题意作AB的垂直平分线MN,交AB于点M,交BD延长线于点N(2)连接,根据平行四边形的性质求得,进而根据垂直平分线的性质以及导角可求得 是等腰直角三角形,进而证明即可得证NE=AB.(1)如图,AB的垂直平分线MN,交AB于点M,交BD延长线于点N(2)如图,连接四边形是平行四边形,,则是的垂直平分线又在与中,【点睛】本题考查了作垂直平分线,平行四边形的性质,垂直平分线的性质,等边对等角,三角形全等的性质与判定,掌握以上知识是解题的关键.3、证明见解析;邻边相等的平行四边形是菱形,对角线垂直的平行四边形是菱形.【解析】【分析】根据邻边相等的平行四边形是菱形或对角线垂直的平行四边形是菱形证明即可.【详解】解:如图,四边形AECF即为所求作.理由:四边形ABCD是平行四边形,∴AE∥CF,∴∠EAO=∠FCO,∵EF垂直平分线段AC,∴OA=OC,在△AEO和△CFO中,,∴△AEO≌△CFO(ASA),∴AE=CF,∴四边形AECF是平行四边形,∵EA=EC或AC⊥EF,∴四边形AECF是菱形.故答案为:邻边相等的平行四边形是菱形,对角线垂直的平行四边形是菱形.【点睛】本题考查作图-复杂作图,平行四边形的性质,菱形的判定等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.4、 (1)-3,3,1,3,-3,-1(2)①-2;②(3)或【解析】【分析】(1)分别以、、为对角线,利用平行四边形以及平移的性质可得点,,的坐标;(2)①根据平行公理得,、在同一直线上,、、在同一直线上,可得是等腰三角形△的中位线,求出,即可得的值;②由①求得的的值可得,的坐标,分别求出直线过点,时的值即可求解;(3)由题意用表示出点,,的坐标,画出图形,求出直线与△交于点,时的值即可求解.(1)解:,,,轴.以为对角线时,四边形是平行四边形,,,将向左平移2个单位长度可得,即;以为对角线时,四边形是平行四边形,,,将向右平移2个单位长度可得,即;以为对角线时,四边形是平行四边形,对角线的中点与的中点重合,的中点为,,.故答案为:,,;(2)解:①如图,若△是以为底的等腰三角形,四边形,,是平行四边形,,,,、、在同一直线上,、、在同一直线上,,是等腰三角形△的中位线,,,,,,,;②由①得,,.当直线过点时,,解得:,当直线过点时,,解得:,的取值范围为;(3)解:如图,,,,,.连接、交于点,四边形是平行四边形,点、关于点对称,,直线与△有公共点,当直线与△交于点,,解得:,时,直线与△有公共点;当直线与△交于点,,解得:,时,直线与△有公共点;综上,的取值范围为或.【点睛】本题考查了平行四边形的性质,坐标与图形性质,平移的性质,一次函数的性质,一次函数图象上点的坐标特征等知识,解题的关键是利用数形结合与分类讨论的思想进行求解.5、 (1)见解析(2)画图见解析,【解析】【分析】(1)作出腰为5且∠ABC是钝角的等腰三角形ABC即可;(2)作出边长分别为5,3的矩形ABDE即可.(1)解:如图,AB==BC,∠ABC>90°,所以△ABC即为所求;(2)解:如图,矩形BCDE即为所求.AE= .故答案为:.【点睛】本题考查作图-应用与设计作图,等腰三角形的判定,矩形的判定,勾股定理等知识,解题的关键是学会利用数形结合的思想解决问题,属于中考常考题型.
相关试卷
这是一份初中数学冀教版八年级下册第二十二章 四边形综合与测试精品当堂检测题,共30页。
这是一份初中数学冀教版八年级下册第二十二章 四边形综合与测试精品同步达标检测题,共30页。
这是一份冀教版八年级下册第二十二章 四边形综合与测试精品练习,共23页。
![文档详情页底部广告位](http://img.51jiaoxi.com/images/257d7bc79dd514896def3dc0b2e3f598.jpg)