![2021-2022学年基础强化冀教版八年级数学下册第二十二章四边形专项攻克试卷(精选含答案)第1页](http://img-preview.51jiaoxi.com/2/3/12735230/0/0.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![2021-2022学年基础强化冀教版八年级数学下册第二十二章四边形专项攻克试卷(精选含答案)第2页](http://img-preview.51jiaoxi.com/2/3/12735230/0/1.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![2021-2022学年基础强化冀教版八年级数学下册第二十二章四边形专项攻克试卷(精选含答案)第3页](http://img-preview.51jiaoxi.com/2/3/12735230/0/2.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
初中数学冀教版八年级下册第二十二章 四边形综合与测试优秀练习题
展开
这是一份初中数学冀教版八年级下册第二十二章 四边形综合与测试优秀练习题,共30页。试卷主要包含了已知锐角∠AOB,如图.等内容,欢迎下载使用。
八年级数学下册第二十二章四边形专项攻克
考试时间:90分钟;命题人:数学教研组
考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)
一、单选题(10小题,每小题3分,共计30分)
1、如图,△ABC的周长为a,以它的各边的中点为顶点作△A1B1C1,再以△AB1C1各边的中点为顶点作△A2B2C2,再以△AB2C2各边的中点为顶点作△A3B3C3,…如此下去,则△AnBnCn的周长为( )
A.a B.a C.a D.a
2、如图,为了测量一块不规则绿地B,C两点间的距离,可以在绿地的一侧选定一点A,然后测量出AB,AC的中点D,E,如果测量出D,E两点间的距离是8m,那么绿地B,C两点间的距离是( )
A.4m B.8m C.16m D.20m
3、菱形ABCD的边长为5,一条对角线长为6,则菱形面积为( )
A.20 B.24 C.30 D.48
4、如图,菱形ABCD的对角线AC和BD相交于点O,,,E是OB的中点,P是CD的中点,连接PE,则线段PE的长为( )
A. B. C. D.
5、如图①,在▱ABCD中,动点P从点B出发,沿折线B→C→D→B运动,设点P经过的路程为x,△ABP的面积为y,y是x的函数,函数的图象如图②所示,则图②中的a值为( )
A.3 B.4 C.14 D.18
6、已知锐角∠AOB,如图.
(1)在射线OA上取一点C,以点O为圆心,OC长为半径画弧,交射线OB于点D,连接CD;
(2)分别以点C,D为圆心,CD长为半径作弧,两弧交于点P,连接CP,DP;
(3)作射线OP交CD于点Q.
根据以上作图过程及所作图形,下列结论中错误的是( )
A.四边形OCPD是菱形 B.CP=2QC
C.∠AOP=∠BOP D.CD⊥OP
7、如图,在正方形ABCD中,AB=3,点E,F分别在边AB,CD上,∠EFD=60°.若将四边形EBCF沿EF折叠,点B′恰好落在AD边上,则BE的长度为( )
A.1 B. C. D.2
8、如图,正方形ABCD的两条对角线AC,BD相交于点O,点E在BD上,且BE=AD,则∠ACE的度数为( )
A.22.5° B.27.5° C.30° D.35°
9、下面性质中,平行四边形不一定具备的是( )
A.对角互补 B.邻角互补
C.对角相等 D.对角线互相平分
10、如图,矩形中,,如果将该矩形沿对角线折叠,那么图中阴影部分的面积是22.5,则( )
A.8 B.10 C.12 D.14
第Ⅱ卷(非选择题 70分)
二、填空题(5小题,每小题4分,共计20分)
1、平行四边形的对角线________.
几何语言:∵四边形ABCD是平行四边形,
∴AO=________,BO=________(平行四边形的对角线互相平分).
2、四边形ABCD中,AD∥BC,要使它平行四边形,需要增加条件________(只需填一个 条件即可).
3、中,已知AB=CD=4,BC=6,则当AD=________时,四边形ABCD是平行四边形.
4、三角形的中位线______于三角形的第三边,并且等于第三边的______.
数学表达式:如图,
∵AD=BD,AE=EC,
∴DE∥BC,且DE=BC.
5、如图,菱形中,,,点在边上,且,动点在边上,连接,将线段绕点顺时针旋转至线段,连接,则线段长的最小值为__.
三、解答题(5小题,每小题10分,共计50分)
1、如图所示,在每个小正方形的边长均为1的网格中,线段AB的端点A、B均在小正方形的顶点上.
(1)在图中画出等腰△ABC,且△ABC为钝角三角形,点C在小正方形顶点上;
(2)在(1)的条件下确定点C后,再画出矩形BCDE,D,E都在小正方形顶点上,且矩形BCDE的周长为16,直接写出EA的长为 .
2、在平面直角坐标系中,已知点,,,以点,,为顶点的平行四边形有三个,记第四个顶点分别为,,,如图所示.
(1)若,则点,,的坐标分别是( ),( ),( );
(2)若△是以为底的等腰三角形,
①直接写出的值;
②若直线与△有公共点,求的取值范围.
(3)若直线与△有公共点,求的取值范围.
3、如图,在菱形ABCD中,点E、F分别是边CD、BC的中点
(1)求证:四边形BDEG是平行四边形;
(2)若菱形ABCD的边长为13,对角线AC=24,求EG的长.
4、背景资料:在已知所在平面上求一点P,使它到三角形的三个顶点的距离之和最小.这个问题是法国数学家费马1640年前后向意大利物理学家托里拆利提出的,所求的点被人们称为“费马点”.如图1,当三个内角均小于120°时,费马点P在内部,当时,则取得最小值.
(1)如图2,等边内有一点P,若点P到顶点A、B、C的距离分别为3,4,5,求的度数,为了解决本题,我们可以将绕顶点A旋转到处,此时这样就可以利用旋转变换,将三条线段、、转化到一个三角形中,从而求出_______;
知识生成:怎样找三个内角均小于120°的三角形的费马点呢?为此我们只要以三角形一边在外侧作等边三角形并连接等边三角形的顶点与的另一顶点,则连线通过三角形内部的费马点.请同学们探索以下问题.
(2)如图3,三个内角均小于120°,在外侧作等边三角形,连接,求证:过的费马点.
(3)如图4,在中,,,,点P为的费马点,连接、、,求的值.
(4)如图5,在正方形中,点E为内部任意一点,连接、、,且边长;求的最小值.
5、已知正多边形的内角和比外角和大720°,求该正多边形所有对角线的条数.
-参考答案-
一、单选题
1、A
【解析】
【分析】
根据三角形中位线的性质可知的周长的周长,的周长的周长,以此类推找出规律,写出代数式,再整理即可选择.
【详解】
解:∵以△ABC的各边的中点为顶点作,
∴的周长的周长.
∵以各边的中点为顶点作,
∴的周长的周长,
…,
∴的周长
故选:A.
【点睛】
本题主要考查三角形中位线的性质,根据三角形中位线的性质求出前2个三角形的面积总结出规律是解答本题的关键.
2、C
【解析】
【分析】
根据三角形中位线定理即可求出.
【详解】
解:中,、分别是、的中点,
为三角形的中位线,
,
,
故选:C.
【点睛】
本题考查的是三角形中位线定理的应用,解题的关键是掌握三角形的中位线等于第三边的一半.
3、B
【解析】
【分析】
根据菱形的性质利用勾股定理求得另一条对角线,再根据菱形的面积等于两对角线乘积的一半求得菱形的面积.
【详解】
解:如图,当BD=6时,
∵四边形ABCD是菱形,
∴AC⊥BD,AO=CO,BO=DO=3,
∵AB=5,
∴AO==4,
∴AC=8,
∴菱形的面积是:6×8÷2=24,
故选:C.
【点睛】
本题主要考查菱形的面积公式,以及菱形的性质和勾股定理,关键是掌握菱形的面积等于两条对角线的积的一半.
4、A
【解析】
【分析】
取OD的中点H,连接HP,由菱形的性质可得AC⊥BD,AO=CO=4,OB=OD=6,由三角形中位线定理可得,,可得EH=6,,由勾股定理可求PE的长.
【详解】
解:如图,取OD的中点H,连接HP
∵四边形ABCD是菱形
∴AC⊥BD,AO=CO=4,OB=OD=6
∵点H是OD中点,点E是OB的中点,点P是CD的中点
∴OH=3,OE=3,,
∴EH=6,
在中,由勾股定理可得:
∴
故选:A
【点睛】
本题考查了菱形的性质,三角形中位线定理,勾股定理,添加恰当辅助线构造直角三角形是解题的关键.
5、A
【解析】
【分析】
由图②知,BC=6,CD=14-6=8,BD=18-14=4,再通过解直角三角形,求出△CBD高,进而求解.
【详解】
解:由图②知,BC=6,CD=14-6=8,BD=18-14=4,
过点B作BH⊥DC于点H,
设CH=x,则DH=8-x,
则BH2=BC2-CH2=BD2-DH2,即:BH2=42-(8-x)2=62-x2,
解得:
则:,
则,
故选:A.
【点睛】
本题考查的是动点图象问题,此类问题关键是:弄清楚不同时间段,图象和图形的对应关系,进而求解.
6、A
【解析】
【分析】
根据作图信息可以判断出OP平分,由此可以逐一判断即可.
【详解】
解:由作图可知,平分
∴OP垂直平分线段CD
∴∠AOP=∠BOP,CD⊥OP
故选项C,D正确;
由作图可知,
∴是等边三角形,
∴
∵OP垂直平分线段CD
∴
∴CP=2QC
故选项B正确,不符合题意;
由作图可知,,不能确定四边形OCPD是菱形,故选项A符合题意,
故选:A
【点睛】
本题考查了基本作图,解题的关键是熟练掌握作图的依据.
7、D
【解析】
【分析】
由正方形的性质得出∠EFD=∠BEF=60°,由折叠的性质得出∠BEF=∠FEB'=60°,BE=B'E,设BE=x,则B'E=x,AE=3-x,由直角三角形的性质可得:2(3-x)=x,解方程求出x即可得出答案.
【详解】
解:∵四边形ABCD是正方形,
∴AB∥CD,∠A=90°,
∴∠EFD=∠BEF=60°,
∵将四边形EBCF沿EF折叠,点B'恰好落在AD边上,
∴∠BEF=∠FEB'=60°,BE=B'E,
∴∠AEB'=180°-∠BEF-∠FEB'=60°,
∴B'E=2AE,
设BE=x,则B'E=x,AE=3-x,
∴2(3-x)=x,
解得x=2.
故选:D.
【点睛】
本题考查了正方形的性质,折叠的性质,含30°角的直角三角形的性质等知识点,能综合性运用性质进行推理是解此题的关键.
8、A
【解析】
【分析】
利用正方形的性质证明∠DBC=45°和BE=BC,进而证明∠BEC=67.5°.
【详解】
解:∵四边形ABCD是正方形,
∴BC=AD,∠DBC=45°,
∵BE=AD,
∴BE=BC,
∴∠BEC=∠BCE=(180°﹣45°)÷2=67.5°,
∵AC⊥BD,
∴∠COE=90°,
∴∠ACE=90°﹣∠BEC=90°﹣67.5°=22.5°,
故选:A.
【点睛】
本题考查正方形的性质,以及等腰三角形的性质,掌握正方形的性质并加以利用是解决本题的关键.
9、A
【解析】
【分析】
直接利用平行四边形的性质:对角相等、对角线互相平分、对边平行且相等,进而分析得出即可.
【详解】
解:A、平行四边形对角不一定互补,故符合题意;
B、平行四边形邻角互补正确,故不符合题意;
C、平行四边形对角相等正确,故不符合题意.
D、平行四边形的对角线互相平分正确,故不符合题意;
故选A.
【点睛】
此题主要考查了平行四边形的性质,熟练掌握相关性质是解题关键.
10、C
【解析】
【分析】
根据折叠和矩形的性质,可得∠DBE =∠CBD,AD∥BC,AD=BC,AB⊥AD,从而得到∠BDE=∠DBE,进而得到BE=DE,再由的面积是22.5,可得,然后根据勾股定理,即可求解.
【详解】
解:根据题意得: ∠DBE =∠CBD,AD∥BC,AD=BC,AB⊥AD,
∴∠BDE=∠CBD,
∴∠BDE=∠DBE,
∴BE=DE,
∵的面积是22.5,,
∴ ,解得: ,
∴,
在 中,由勾股定理得:
,
∴ .
故选:C
【点睛】
本题主要考查了折叠和矩形的性质,勾股定理,熟练掌握折叠和矩形的性质,勾股定理是解题的关键.
二、填空题
1、 互相平分 CO DO
【解析】
略
2、AD=BC
【解析】
略
3、6
【解析】
略
4、 平行 一半
【解析】
略
5、
【解析】
【分析】
在上取一点,使得,连接,,作直线交于,过点作于.证明,推出点在射线上运动,根据垂线段最短可知,当点与重合时,的值最小,求出即可.
【详解】
解:在上取一点,使得,连接,,作直线交于,过点作于.
,,
是等边三角形,
,,
,,
是等边三角形,
,,
,
,
在和中,
,
,
,
,
点在射线上运动,
根据垂线段最短可知,当点与重合时,的值最小,
,,
,,
,
∴GT//AB
∵BG//AT
四边形是平行四边形,
,,
∴
在中,
∴
,
的最小值为,
故答案为:.
【点睛】
本题考查菱形的性质,全等三角形的判定和性质,解直角三角形等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题.
三、解答题
1、 (1)见解析
(2)画图见解析,
【解析】
【分析】
(1)作出腰为5且∠ABC是钝角的等腰三角形ABC即可;
(2)作出边长分别为5,3的矩形ABDE即可.
(1)
解:如图,AB==BC,∠ABC>90°,所以△ABC即为所求;
(2)
解:如图,矩形BCDE即为所求.AE= .
故答案为:.
【点睛】
本题考查作图-应用与设计作图,等腰三角形的判定,矩形的判定,勾股定理等知识,解题的关键是学会利用数形结合的思想解决问题,属于中考常考题型.
2、 (1)-3,3,1,3,-3,-1
(2)①-2;②
(3)或
【解析】
【分析】
(1)分别以、、为对角线,利用平行四边形以及平移的性质可得点,,的坐标;
(2)①根据平行公理得,、在同一直线上,、、在同一直线上,可得是等腰三角形△的中位线,求出,即可得的值;
②由①求得的的值可得,的坐标,分别求出直线过点,时的值即可求解;
(3)由题意用表示出点,,的坐标,画出图形,求出直线与△交于点,时的值即可求解.
(1)
解:,,
,轴.
以为对角线时,
四边形是平行四边形,
,,
将向左平移2个单位长度可得,即;
以为对角线时,
四边形是平行四边形,
,,
将向右平移2个单位长度可得,即;
以为对角线时,
四边形是平行四边形,
对角线的中点与的中点重合,
的中点为,,
.
故答案为:,,;
(2)
解:①如图,若△是以为底的等腰三角形,
四边形,,是平行四边形,
,,,
、、在同一直线上,、、在同一直线上,,
是等腰三角形△的中位线,
,,
,,,
,
;
②由①得,
,.
当直线过点时,,解得:,
当直线过点时,,解得:,
的取值范围为;
(3)
解:如图,,,,
,.
连接、交于点,
四边形是平行四边形,
点、关于点对称,
,
直线与△有公共点,
当直线与△交于点,,解得:,
时,直线与△有公共点;
当直线与△交于点,,解得:,
时,直线与△有公共点;
综上,的取值范围为或.
【点睛】
本题考查了平行四边形的性质,坐标与图形性质,平移的性质,一次函数的性质,一次函数图象上点的坐标特征等知识,解题的关键是利用数形结合与分类讨论的思想进行求解.
3、 (1)证明见解析
(2)10
【解析】
【分析】
(1)利用AC平分∠BAD,AB∥CD,得到∠DAC=∠DCA,即可得到AD=DC,利用一组对边平行且相等可证明四边形ABCD是平行四边形,再结合AB=AD,即可求证结论;
(2)根据菱形的性质,得到CD=13,AO=CO=12,结合中位线性质,可得四边形BDEG是平行四边形,利用勾股定理即可得到OB、OD的长度,即可求解.
(1)
证明:∵AC平分∠BAD,AB∥CD,
∴∠DAC=∠BAC,∠DCA=∠BAC,
∴∠DAC=∠DCA,
∴AD=DC,
又∵AB∥CD,AB=AD,
∴AB∥CD且AB=CD,
∴四边形ABCD是平行四边形,
∵AB=AD,
∴四边形ABCD是菱形.
(2)
解:连接BD,交AC于点O,如图:
∵菱形ABCD的边长为13,对角线AC=24,
∴CD=13,AO=CO=12,
∵点E、F分别是边CD、BC的中点,
∴EF∥BD(中位线),
∵AC、BD是菱形的对角线,
∴AC⊥BD,OB=OD,
又∵AB∥CD,EF∥BD,
∴DE∥BG,BD∥EG,
∵四边形BDEG是平行四边形,
∴BD=EG,
在△COD中,
∵OC⊥OD,CD=13,CO=12,
∴,
∴EG=BD=10.
【点睛】
本题考查了平行四边形性质判定方法、菱形的判定和性质、等腰三角形性质、勾股定理等知识,关键在于熟悉四边形的判定方法和在题目中找到合适的判定条件.
4、 (1)150°;
(2)见详解;
(3);
(4).
【解析】
【分析】
(1)根据旋转性质得出≌,得出∠BAP=∠CAP′,∠APB=∠AP′C,AP=AP′=3,BP=CP′=4,根据△ABC为等边三角形,得出∠BAC=60°,可证△APP′为等边三角形,PP′=AP=3,∠AP′P=60°,根据勾股定理逆定理,得出△PP′C是直角三角形,∠PP′C=90°,可求∠AP′C=∠APP+∠PPC=60°+90°=150°即可;
(2)将△APB逆时针旋转60°,得到△AB′P′,连结PP′,根据△APB≌△AB′P′,AP=AP′,PB=PB′,AB=AB′,根据∠PAP′=∠BAB′=60°,△APP′和△ABB′均为等边三角形,得出PP′=AP,根据,根据两点之间线段最短得出点C,点P,点P′,点B′四点共线时,最小=CB′,点P在CB′上即可;
(3)将△APB逆时针旋转60°,得到△AP′B′,连结BB′,PP′,得出△APB≌△AP′B′,可证△APP′和△ABB′均为等边三角形,得出PP′=AP,BB′=AB,∠ABB′=60°,根据,可得点C,点P,点P′,点B′四点共线时,最小=CB′,利用30°直角三角形性质得出AB=2AC=2,根据勾股定理BC=,可求BB′=AB=2,根据∠CBB′=∠ABC+∠ABB′=30°+60°=90°,在Rt△CBB′中,B′C=即可;
(4)将△BCE逆时针旋转60°得到△CE′B′,连结EE′,BB′,过点B′作B′F⊥AB,交AB延长线于F,得出△BCE≌△CE′B′,BE=B′E′,CE=CE′,CB=CB′,可证△ECE′与△BCB′均为等边三角形,得出EE′=EC,BB′=BC,∠B′BC=60°,,得出点C,点E,点E′,点B′四点共线时,最小=AB′,根据四边形ABCD为正方形,得出AB=BC=2,∠ABC=90°,可求∠FBB′=180°-∠ABC-∠CBB′=180°-90°-60°=30°,根据30°直角三角形性质得出BF=,勾股定理BF=,可求AF=AB+BF=2+,再根据勾股定理AB′=即可.
(1)
解:连结PP′,
∵≌,
∴∠BAP=∠CAP′,∠APB=∠AP′C,AP=AP′=3,BP=CP′=4,
∵△ABC为等边三角形,
∴∠BAC=60°
∴∠PAP′=∠PAC+∠CAP′=∠PAC+∠BAP=60°,
∴△APP′为等边三角形,
,∴PP′=AP=3,∠AP′P=60°,
在△P′PC中,PC=5,
,
∴△PP′C是直角三角形,∠PP′C=90°,
∴∠AP′C=∠APP+∠PPC=60°+90°=150°,
∴∠APB=∠AP′C=150°,
故答案为150°;
(2)
证明:将△APB逆时针旋转60°,得到△AB′P′,连结PP′,
∵△APB≌△AB′P′,
∴AP=AP′,PB=PB′,AB=AB′,
∵∠PAP′=∠BAB′=60°,
∴△APP′和△ABB′均为等边三角形,
∴PP′=AP,
∵,
∴点C,点P,点P′,点B′四点共线时,最小=CB′,
∴点P在CB′上,
∴过的费马点.
(3)
解:将△APB逆时针旋转60°,得到△AP′B′,连结BB′,PP′,
∴△APB≌△AP′B′,
∴AP′=AP,AB′=AB,
∵∠PAP′=∠BAB′=60°,
∴△APP′和△ABB′均为等边三角形,
∴PP′=AP,BB′=AB,∠ABB′=60°,
∵
∴点C,点P,点P′,点B′四点共线时,最小=CB′,
∵,,,
∴AB=2AC=2,根据勾股定理BC=
∴BB′=AB=2,
∵∠CBB′=∠ABC+∠ABB′=30°+60°=90°,
∴在Rt△CBB′中,B′C=
∴最小=CB′=;
(4)
解:将△BCE逆时针旋转60°得到△CE′B′,连结EE′,BB′,过点B′作B′F⊥AB,交AB延长线于F,
∴△BCE≌△CE′B′,
∴BE=B′E′,CE=CE′,CB=CB′,
∵∠ECE′=∠BCB′=60°,
∴△ECE′与△BCB′均为等边三角形,
∴EE′=EC,BB′=BC,∠B′BC=60°,
∵,
∴点C,点E,点E′,点B′四点共线时,最小=AB′,
∵四边形ABCD为正方形,
∴AB=BC=2,∠ABC=90°,
∴∠FBB′=180°-∠ABC-∠CBB′=180°-90°-60°=30°,
∵B′F⊥AF,
∴BF=,BF=,
∴AF=AB+BF=2+,
∴AB′=,
∴最小=AB′=.
【点睛】
本题考查图形旋转性质,等边三角形判定与性质,勾股定理,直角三角形判定与性质,两点之间线段最短,四点共线,正方形性质,30°直角三角形性质,掌握图形旋转性质,等边三角形判定与性质,勾股定理,直角三角形判定与性质,两点之间线段最短,四点共线,正方形性质,30°直角三角形性质是解题关键.
5、20条
【解析】
【分析】
多边形的内角和可以表示成(n-2)•180°,外角和是固定的360°,根据正多边形内角和与外角和的差等于720°,列方程求出正多边形的边数.然后根据n边形共有条对角线,得出此正多边形的所有对角线的条数.
【详解】
解:设此正多边形为正n边形.
由题意得:,
解得n=8,
∴此正多边形所有的对角线条数为:=20.
答:这个正多边形的所有对角线有20条.
【点睛】
此题考查多边形的边数与对角线条数,一元一次方程,解题关键在于掌握多边形内角和公式和外角和,以及对角线条数计算公式..
相关试卷
这是一份冀教版八年级下册第二十二章 四边形综合与测试课时练习,共31页。试卷主要包含了如图,在中,DE平分,,则,如图,E,下列说法不正确的是等内容,欢迎下载使用。
这是一份冀教版八年级下册第二十二章 四边形综合与测试课堂检测,共25页。试卷主要包含了如图,已知矩形ABCD中,R等内容,欢迎下载使用。
这是一份冀教版八年级下册第二十二章 四边形综合与测试课后练习题,共28页。试卷主要包含了下列命题错误的是,下列命题是真命题的有个.,下列说法错误的是等内容,欢迎下载使用。
![文档详情页底部广告位](http://img.51jiaoxi.com/images/257d7bc79dd514896def3dc0b2e3f598.jpg)