冀教版八年级下册第二十二章 四边形综合与测试精品练习
展开
这是一份冀教版八年级下册第二十二章 四边形综合与测试精品练习,共30页。试卷主要包含了下列说法错误的是等内容,欢迎下载使用。
八年级数学下册第二十二章四边形同步练习 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、如图,将边长为6个单位的正方形ABCD沿其对角线BD剪开,再把△ABD沿着DC方向平移,得到△A′B′D′,当两个三角形重叠部分的面积为4个平方单位时,它移动的距离DD′等于( )A.2 B. C. D.2、如图,在矩形ABCD中,动点P从点A出发,沿A→B→C运动,设,点D到直线PA的距离为y,且y关于x的函数图象如图所示,则当和的面积相等时,y的值为( )A. B. C. D.3、下列说法不正确的是( )A.三角形的外角大于每一个与之不相邻的内角B.四边形的内角和与外角和相等C.等边三角形是轴对称图形,对称轴只有一条D.全等三角形的周长相等,面积也相等4、如图,正方形ABCD的对角线相交于点O,以点O为顶点的正方形OEGF的两边OE,OF分别交正方形ABCD的两边AB,BC于点M,N,记的面积为,的面积为,若正方形的边长,,则的大小为( )A.6 B.7 C.8 D.95、如图,四边形ABCD是平行四边形,对角线AC与BD交于点O,若,,则的度数为( )A.157° B.147° C.137° D.127°6、小明想判断家里的门框是否为矩形,他应该( )A.测量三个角是否都是直角 B.测量对角线是否互相平分C.测量两组对边是否分别相等 D.测量一组对角是否是直角7、如图,已知菱形OABC的顶点O(0,0),B(2,2),菱形的对角线的交于点D;若将菱形OABC绕点O逆时针旋转,每秒旋转45°,从如图所示位置起,经过60秒时,菱形的对角线的交点D的坐标为( )A.(1,1) B.(﹣1,﹣1) C.(-1,1) D.(1,﹣1)8、如图,已知菱形ABCD的边长为2,∠DAB=60°,则对角线BD的长是( )A.1 B.4 C.2 D.69、下列说法错误的是( )A.平行四边形对边平行且相等 B.菱形的对角线平分一组对角C.矩形的对角线互相垂直 D.正方形有四条对称轴10、如图,在给定的正方形中,点从点出发,沿边方向向终点运动, 交于点,以,为邻边构造平行四边形,连接,则的度数的变化情况是( )A.一直减小 B.一直减小后增大 C.一直不变 D.先增大后减小第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、若一个正多边形的内角和与外角和的度数相等,则此正多边形对称轴条数为______.2、如图,在中,,D为外一点,使,E为BD的中点若,则__________.3、如图,矩形中,,,以点为中心,将矩形旋转得到矩形,使得点落在边上,则的度数为__________.4、三角形的各边长分别是8、10、12、则连接各边中点所得的三角形的周长是___.5、四边形ABCD中,AD∥BC,要使它平行四边形,需要增加条件________(只需填一个 条件即可).三、解答题(5小题,每小题10分,共计50分)1、(1)【发现证明】如图1,在正方形中,点,分别是,边上的动点,且,求证:.小明发现,当把绕点顺时针旋转90°至,使与重合时能够证明,请你给出证明过程.(2)【类比引申】①如图2,在正方形中,如果点,分别是,延长线上的动点,且,则(1)中的结论还成立吗?若不成立,请写出,,之间的数量关系______(不要求证明)②如图3,如果点,分别是,延长线上的动点,且,则,,之间的数量关系是______(不要求证明)(3)【联想拓展】如图1,若正方形的边长为6,,求的长.2、如图,在矩形ABCD中,(1)尺规作图(不写作法,保留作图痕迹):作对角线BD的垂直平分线EF分别交AD、BC于E、F点,交BD于O点.(2)在(1)的条件下,求证:AE=CF.3、如图,正方形ABCD中,E为BD上一点,AE的延长线交BC的延长线于点F,交CD于点H,G为FH的中点.(1)求证:AE=CE;(2)猜想线段AE,EG和GF之间的数量关系,并证明.4、在平面直角坐标系中,已知点,,,以点,,为顶点的平行四边形有三个,记第四个顶点分别为,,,如图所示.(1)若,则点,,的坐标分别是( ),( ),( );(2)若△是以为底的等腰三角形,①直接写出的值;②若直线与△有公共点,求的取值范围.(3)若直线与△有公共点,求的取值范围.5、如图,在中,于点E,延长BC至点F,使,连接AF,DE,DF.(1)求证:四边形AEFD为矩形;(2)若,,,求DF的长. -参考答案-一、单选题1、B【解析】【分析】先判断重叠部分的形状,然后设DD'=x,进而表示D'C等相关的线段,最后通过重叠部分的面积列出方程求出x的值即可得到答案.【详解】解:∵四边形ABCD是正方形,∴△ABD和△BCD是等腰直角三角形, 如图,记A'D'与BD的交点为点E,B'D'与BC的交点为F,由平移的性质得,△DD'E和△D'CF为等腰直角三角形,∴重叠部分的四边形D'EBF为平行四边形,设DD'=x,则D'C=6-x,D'E=x,∴S▱D'EBF=D'E•D'C=(6-x)x=4,解得:x=3+或x=3-,故选:B.【点睛】本题考查了正方形的性质、等腰直角三角形的性质、平移的性质,通过平移的性质得到重叠部分四边形的形状是解题的关键.2、D【解析】【分析】先结合图象分析出矩形AD和AB边长分别为4和3,当△PCD和△PAB的面积相等时可知P点为BC中点,利用面积相等求解y值.【详解】解:当P点在AB上运动时,D点到AP的距离不变始终是AD长,从图象可以看出AD=4,当P点到达B点时,从图象看出x=3,即AB=3.当△PCD和△PAB的面积相等时,P点在BC中点处,此时△ADP面积为,在Rt△ABP中,,由面积相等可知:,解得,故选:D.【点睛】本题主要考查了函数图形的认识,分析图象找到对应的矩形的边长,解决动点问题就是“动中找静”,结合图象找到“折点处的数据真正含义”便可解决问题.3、C【解析】【分析】根据三角形外角的性质,四边形内角和定理和外角和定理,等边三角形的对称性,全等三角形的性质判断即可.【详解】∵三角形的外角大于每一个与之不相邻的内角,正确,∴A不符合题意;∵四边形的内角和与外角和都是360°,∴四边形的内角和与外角和相等,正确,∴B不符合题意;∵等边三角形是轴对称图形,对称轴有三条,∴等边三角形是轴对称图形,对称轴只有一条,错误,∴C符合题意;∵全等三角形的周长相等,面积也相等,正确,∴D不符合题意;故选C.【点睛】本题考查了三角形外角的性质,四边形的内角和,外角和定理,等边三角形的对称性,全等三角形的性质,准确相关知识是解题的关键.4、D【解析】【分析】由题意依据全等三角形的判定得出△BOM≌△CON,进而根据正方形的性质即可得出的大小.【详解】解:∵正方形ABCD的对角线AC,BD交于点O,∴OC=OD=BO=AO,∠ABO=∠ACB=45°,AC⊥BD.∵∠MOB+∠BON=90°,∠BON+∠CON=90°∴∠BOM=∠CON,且OC=OB,∠ABO=∠ACB=45°,∴△BOM≌△CON(ASA),=S△BOM,∴,∵=S正方形ABCD,正方形的边长,,∴=S正方形ABCD -=.故选:D.【点睛】本题考查正方形的性质以及全等三角形的判定和性质等知识,灵活运用这些性质进行推理是解答本题的关键.5、C【解析】【分析】根据平行四边形的性质推出AO=AB,求出∠AOB的度数,即可得到的度数.【详解】解:∵四边形ABCD是平行四边形,∴AC=2AO,∵,∴AO=AB,∵,∴,∴=,故选:C.【点睛】此题考查了平行四边形的性质,三角形的内角和,利用邻补角求角度,正确掌握平行四边形的性质是解题的关键.6、A【解析】【分析】根据矩形的判定方法解题.【详解】解:A、三个角都是直角的四边形是矩形,选项A符合题意;B、对角线互相平分的四边形是平行四边形,选项B不符合题意,C、两组对边分别相等的四边形是平行四边形,选项C不符合题意;D、一组对角是直角的四边形不是矩形,选项D不符合题意;故选:A.【点睛】本题考查矩形的判定方法,是重要考点,掌握相关知识是解题关键.7、B【解析】【分析】分别过点和点作轴于点,作轴于点,根据菱形的性质以及中位线的性质求得点的坐标,进而计算旋转的度数,7.5周,进而根据中心对称求得点旋转后的D坐标【详解】如图,分别过点和点作轴于点,作轴于点,∴,∵四边形为菱形,∴点为的中点,∴点为的中点,∴,,∵,∴;由题意知菱形绕点逆时针旋转度数为:,∴菱形绕点逆时针旋转周,∴点绕点逆时针旋转周,∵,∴旋转60秒时点的坐标为.故选B【点睛】根据菱形的性质及中点的坐标公式可得点D坐标,再根据旋转的性质可得旋转后点D的坐标,熟练掌握菱形的性质及中点的坐标公式、中心对称的性质是解题的关键.8、C【解析】略9、C【解析】【分析】根据矩形的性质、平行四边形的性质、菱形的性质和正方形的性质分别进行判断即可.【详解】解:A、平行四边形对边平行且相等,正确,不符合题意;B、菱形的对角线平分一组对角,正确,不符合题意;C、矩形的对角线相等,不正确,符合题意;D、正方形有四条对称轴,正确,不符合题意;故选:C.【点睛】本题考查了矩形的性质、平行四边形的性质、菱形的性质和正方形的性质,掌握以上性质定理是解题的关键.10、A【解析】【分析】根据题意,作交的延长线于,证明是的角平分线即可解决问题.【详解】解:作交的延长线于, ∵四边形 是正方形, ∴,, ∵, ∴,, ∴, ∴, ∴, ∵四边形是平行四边形, ∴,, ∵, , ∴, ∵,. ∴, ∴,, ∴, ∴, ∵,∴, ∴是的角平分线, ∴点的运动轨迹是的角平分线,∵,由图可知,点P从点D开始运动,所以一直减小,故选:A .【点睛】本题考查了正方形的性质、全等三角形的判定和性质、平行四边形的性质等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题.二、填空题1、4【解析】【分析】利用多边形的内角和与外角和公式列出方程,求得多边形的边,再利用正多边形的性质可得答案.【详解】解:设多边形的边数为n,根据题意(n-2)•180°=360°,解得n=4.所以正多边形为正方形,所以这个正多边形有4条对称轴,故答案为:4.【点睛】本题考查了多边形的内角和公式与多边形的外角和定理,解一元一次方程,需要注意,多边形的外角和与边数无关,任何多边形的外角和都是360°,也考查的正多边形的对称轴的条数.2、##30度【解析】【分析】延长BC、AD交于F,通过全等证明C是BF的中点,然后利用中位线的性质即可.【详解】解:延长BC、AD交于F,在△ABC和△AFC中,∴△ABC≌△AFC(ASA),∴BC=FC,∴C为BF的中点,∵E为BD的中点,∴CE为△BDF的中位线,∴CE//AF,∴∠ACE=∠CAF,∵∠ACB=90°,∠ABC=60°,∴∠BAC=30°,∴∠ACE=∠CAF=∠BAC=30°,故答案为:30°.【点睛】本题考查了全等三角形的判定与性质、三角形中位线的定义与性质,以及平行线的性质,作出正确的辅助线是解题的关键.3、90【解析】【分析】根据旋转的性质和矩形的性质可得CD=C'D=AB=AB'=3,A'D=AD=BC=B'C'=4,由勾股定理可求AC=AC'的长,延长C'B'交BC于点E,连接CC',由勾股定理求出CC'的长,最后由勾股定理逆定理判断是直角三角形即可.【详解】解:∵将矩形ABCD绕点A按逆时针方向旋转90°,得到矩形AB′C′D′,∴CD=C'D=AB=AB'=3,A'D=AD=BC=B'C'=4,∴ 延长C'B'交BC于点E,连接CC',如图,则四边形是矩形∴ ∴ ∴ 而∴∴是直角三角形∴ 故答案为:90【点睛】本题考查勾肥定理、旋转的性质,矩形的性质等知识,解题的关键是掌握旋转变换的性质,4、15【解析】【分析】由中点和中位线定义可得新三角形的各边长为原三角形各边长的一半,即可求其周长.【详解】解:如图,D,E,F分别是△ABC的三边的中点,则DE=AC,DF=BC,EF=AB,∴△DEF的周长=DE+DF+EF=(AC+BC+AB)=×(8+10+12)cm=15cm.故答案为15.【点睛】本题考查了三角形的中位线定理,熟记三角形的中位线平行于第三边并且等于第三边的一半可得中点三角形的周长等于原三角形的周长的一半是解题的关键.5、AD=BC【解析】略三、解答题1、(1)见解析;(2)①不成立,结论:;②,见解析;(3)【解析】【分析】(1)证明,可得出,则结论得证;(2)①将绕点顺时针旋转至根据可证明,可得,则结论得证;②将绕点逆时针旋转至,证明,可得出,则结论得证;(3)求出,设,则,,在中,得出关于的方程,解出则可得解.【详解】(1)证明:把绕点顺时针旋转至,如图1,,,,,,,三点共线,,,,,,,,;(2)①不成立,结论:;证明:如图2,将绕点顺时针旋转至,,,,,,,,;②如图3,将绕点逆时针旋转至,,,,,,,,,.即.故答案为:.(3)解:由(1)可知,正方形的边长为6,,.,,设,则,,在中,,,解得:.,.【点睛】本题属于四边形综合题,主要考查了正方形的性质、旋转的性质、全等三角形的判定与性质以及勾股定理的综合应用,解题的关键是作辅助线构造全等三角形,根据全等三角形的对应边相等进行推导.2、 (1)见解析(2)见解析【解析】【分析】(1)利用尺规作出图形即可.(2)利用全等三角形的性质证明即可.(1)解:如图,直线EF即为所求作..(2)证明:在矩形ABCD中,AD=BC,∠ADB=∠DBC,∵EF为BD的垂直平分线,∴∠EOD=∠FOB=90°,OB=OD,在△EOD与△FOB中,,∴△EOD≌△FOB(ASA),∴ED=BF,∴AD-ED=BC-BF,即AE=CF.【点睛】本题考查了作图-复杂作图,线段的垂直平分线,全等三角形的判定和性质等知识,解题的关键是理解题意,灵活运用所学知识解决问题.3、 (1)见解析(2)AE2+ GF2=EG2,证明见解析【解析】【分析】(1)根据“SAS”证明△ADE≌△CDE即可;(2)连接CG,可得CG=GF=GH=FH,再证明∠ECG=90°,然后在Rt△CEG中,可得CE2+CG2=EG2,进而可得线段AE,EG和GF之间的数量关系.(1)证明:∵四边形ABCD是正方形,∴AD=CD,∠ADE=∠CDE, 在△ADE和△CDE中,∴△ADE≌△CDE,∴AE=CE;(2)AE2+ GF2=EG2,理由:连接CG∵△ADE≌△CDE,∴∠1=∠2.∵G为FH的中点,∴CG=GF=GH=FH,∴∠6=∠7.∵∠5=∠6,∴∠5=∠7.∵∠1+∠5=90°,∴∠2+∠7=90°,即∠ECG=90°,在Rt△CEG中,CE2+CG2=EG2,∴AE2+ GF2=EG2.【点睛】本题考查了正方形的性质,全等三角形的判定与性质,直角三角形的性质,以及勾股定理等知识,证明△ADE≌△CDE是解(1)的关键,证明∠ECG=90°是解(2)的关键.4、 (1)-3,3,1,3,-3,-1(2)①-2;②(3)或【解析】【分析】(1)分别以、、为对角线,利用平行四边形以及平移的性质可得点,,的坐标;(2)①根据平行公理得,、在同一直线上,、、在同一直线上,可得是等腰三角形△的中位线,求出,即可得的值;②由①求得的的值可得,的坐标,分别求出直线过点,时的值即可求解;(3)由题意用表示出点,,的坐标,画出图形,求出直线与△交于点,时的值即可求解.(1)解:,,,轴.以为对角线时,四边形是平行四边形,,,将向左平移2个单位长度可得,即;以为对角线时,四边形是平行四边形,,,将向右平移2个单位长度可得,即;以为对角线时,四边形是平行四边形,对角线的中点与的中点重合,的中点为,,.故答案为:,,;(2)解:①如图,若△是以为底的等腰三角形,四边形,,是平行四边形,,,,、、在同一直线上,、、在同一直线上,,是等腰三角形△的中位线,,,,,,,;②由①得,,.当直线过点时,,解得:,当直线过点时,,解得:,的取值范围为;(3)解:如图,,,,,.连接、交于点,四边形是平行四边形,点、关于点对称,,直线与△有公共点,当直线与△交于点,,解得:,时,直线与△有公共点;当直线与△交于点,,解得:,时,直线与△有公共点;综上,的取值范围为或.【点睛】本题考查了平行四边形的性质,坐标与图形性质,平移的性质,一次函数的性质,一次函数图象上点的坐标特征等知识,解题的关键是利用数形结合与分类讨论的思想进行求解.5、 (1)见解析(2)【解析】【分析】(1)根据线段的和差关系可得BC=EF,根据平行四边形的性质可得AD∥BC,AD=BC,即可得出AD=EF,可证明四边形AEFD为平行四边形,根据AE⊥BC即可得结论;(2)根据矩形的性质可得AF=DE,可得△BAF为直角三角形,利用“面积法”可求出AE的长,即可得答案.(1)∵BE=CF,∴BE+CE=CF+CE,即BC=EF,∵ABCD是平行四边形,∴AD∥BC,AD=BC,∴AD=EF,∵AD∥EF,∴四边形AEFD为平行四边形,∵AE⊥BC,∴∠AEF=90°,∴四边形AEFD为矩形.(2)∵四边形AEFD为矩形,∴AF=DE=4,DF=AE,∵,,,∴AB2+AF2=BF2,∴△BAF为直角三角形,∠BAF=90°,∴,∴AE=,∴.【点睛】本题考查平行四边形的性质、矩形的判定与性质及勾股定理的逆定理,熟练掌握相关性质及判定定理是解题关键.
相关试卷
这是一份初中数学冀教版八年级下册第二十二章 四边形综合与测试同步训练题,共28页。
这是一份冀教版八年级下册第二十二章 四边形综合与测试课后练习题,共28页。试卷主要包含了下列命题错误的是,下列命题是真命题的有个.,下列说法错误的是等内容,欢迎下载使用。
这是一份初中数学冀教版八年级下册第二十二章 四边形综合与测试巩固练习,共28页。试卷主要包含了六边形对角线的条数共有等内容,欢迎下载使用。