冀教版八年级下册第二十二章 四边形综合与测试精品课后作业题
展开八年级数学下册第二十二章四边形定向测评
考试时间:90分钟;命题人:数学教研组
考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)
一、单选题(10小题,每小题3分,共计30分)
1、在菱形ABCD中,对角线AC,BD相交于点O,如果AC=6,BD=8,那么菱形ABCD的面积是( )
A.6 B.12 C.24 D.48
2、如图,在中,DE平分,,则( )
A.30° B.45° C.60° D.80°
3、如图,将边长为6个单位的正方形ABCD沿其对角线BD剪开,再把△ABD沿着DC方向平移,得到△A′B′D′,当两个三角形重叠部分的面积为4个平方单位时,它移动的距离DD′等于( )
A.2 B. C. D.
4、下列选项中,不能被边长为2的正方形及其内部所覆盖的图形是( )
A.长度为的线段 B.边长为2的等边三角形
C.斜边为2的直角三角形 D.面积为4的菱形
5、正方形具有而矩形不一定具有的性质是( )
A.四个角相等 B.对角线互相垂直
C.对角互补 D.对角线相等
6、如图,正方形的边长为,对角线、相交于点.为上的一点,且,连接并延长交于点.过点作于点,交于点,则的长为( )
A. B. C. D.
7、如图,矩形中,,如果将该矩形沿对角线折叠,那么图中阴影部分的面积是22.5,则( )
A.8 B.10 C.12 D.14
8、下列说法不正确的是( )
A.矩形的对角线相等
B.直角三角形斜边上的中线等于斜边的一半
C.对角线互相垂直且相等的四边形是正方形
D.菱形的对角线互相垂直
9、已知锐角∠AOB,如图.
(1)在射线OA上取一点C,以点O为圆心,OC长为半径画弧,交射线OB于点D,连接CD;
(2)分别以点C,D为圆心,CD长为半径作弧,两弧交于点P,连接CP,DP;
(3)作射线OP交CD于点Q.
根据以上作图过程及所作图形,下列结论中错误的是( )
A.四边形OCPD是菱形 B.CP=2QC
C.∠AOP=∠BOP D.CD⊥OP
10、如图,在正方形ABCD中,点E、点F分别在AD、CD上,且AE=DF,若四边形OEDF的面积是1,OA的长为1,则正方形的边长AB为( )
A.1 B.2 C. D.2
第Ⅱ卷(非选择题 70分)
二、填空题(5小题,每小题4分,共计20分)
1、在任意△ABC中,取AB、AC边中点D、E,连接DE.像DE这样,连接三角形两边中点的线段叫做三角形的______.
一个三角形有______条中位线.
2、如图,四边形ABCD是平行四边形,BE平分∠ABC,与AD交于点E,BC=5,DE=2,则AB的长为 ___.
3、过某个多边形的一个顶点的所有对角线,将这个多边形分成6个三角形,这个多边形是___边形.
4、如图,已知AD为的高,,以AB为底边作等腰,,交AC于F,连ED,EC,有以下结论:①;②;③;④;其中正确的是___.
5、从八边形的一个顶点引出的对角线有_____条.
三、解答题(5小题,每小题10分,共计50分)
1、已知正多边形的内角和比外角和大720°,求该正多边形所有对角线的条数.
2、已知正方形与正方形,,.
(1)如图1,若点和点重合,点在线段上,点在线段的延长线上,连接、、,将阴影部分三角形的面积记作,则 (用含有、的代数式表示).
(2)如图2,若点与点重合,点在线段上,点在线段的延长线上,连接、、,将阴影部分三角形的面积记作,则 (用含有、的代数式表示).
(3)如图3,若将正方形沿正方形的边所在直线平移,使得点、在线段上(点不与点重合、点不与点重合),连接、、,设,将阴影部分三角形的面积记作,则 (用含有、、的代数式表示).
(4)如图4,若将正方形沿正方形的边所在直线平移,使得点、在的延长线上,连接、、,设,将阴影部分三角形的面积记作,则 (用含有、、的代数式表示).
3、在平面直角坐标系中,已知点,,,以点,,为顶点的平行四边形有三个,记第四个顶点分别为,,,如图所示.
(1)若,则点,,的坐标分别是( ),( ),( );
(2)若△是以为底的等腰三角形,
①直接写出的值;
②若直线与△有公共点,求的取值范围.
(3)若直线与△有公共点,求的取值范围.
4、如图,已知平行四边形ABCD.
(1)用尺规完成以下基本作图:在CB上截取CE,使CE=CD,连接DE,作∠ABC的平分线BF交AD于点F.(保留作图痕迹,不写作法)
(2)在(1)所作的图形中,证明四边形BEDF为平行四边形.
5、如图,▱ABCD中,E为BC边的中点,求证:DC=CF.
-参考答案-
一、单选题
1、C
【解析】
【分析】
利用菱形的面积公式即可求解.
【详解】
解:菱形ABCD的面积===24,
故选:C.
【点睛】
本题考查菱形的面积公式,菱形的面积等于对角线乘积的一半.
2、C
【解析】
【分析】
根据平行四边形的性质得,故,由DE平分得,即可计算.
【详解】
∵四边形ABCD是平行四边形,
∴,
∴,
∵DE平分,
∴,
∴.
故选:C.
【点睛】
本题考查平行四边形的性质,平行线的性质以及角平分线的定义,掌握平行四边形的性质是解题的关键.
3、B
【解析】
【分析】
先判断重叠部分的形状,然后设DD'=x,进而表示D'C等相关的线段,最后通过重叠部分的面积列出方程求出x的值即可得到答案.
【详解】
解:∵四边形ABCD是正方形,
∴△ABD和△BCD是等腰直角三角形,
如图,记A'D'与BD的交点为点E,B'D'与BC的交点为F,
由平移的性质得,△DD'E和△D'CF为等腰直角三角形,
∴重叠部分的四边形D'EBF为平行四边形,
设DD'=x,则D'C=6-x,D'E=x,
∴S▱D'EBF=D'E•D'C=(6-x)x=4,
解得:x=3+或x=3-,
故选:B.
【点睛】
本题考查了正方形的性质、等腰直角三角形的性质、平移的性质,通过平移的性质得到重叠部分四边形的形状是解题的关键.
4、D
【解析】
【分析】
先计算出正方形的对角线长,即可逐项进行判定求解.
【详解】
解:A、正方形的边长为2,
对角线长为,
长度为的线段能被边长为2的正方形及其内部所覆盖,故不符合题意;
B、边长为2的等边三角形能被边长为2的正方形及其内部所覆盖,故不符合题意;
C、斜边为2的直角三角形能被边长为2的正方形及其内部所覆盖,故不符合题意;
D、而面积为4的菱形对角线长可以为8,故不能被边长为2的正方形及其内部所覆盖,故符合题意,
故选:D.
【点睛】
本题主要考查正方形的性质,等边三角形的性质,菱形的性质等知识,解题的关键是掌握相关图形的特征进行判断.
5、B
【解析】
略
6、C
【解析】
【分析】
根据正方形的性质以及已知条件求得的长,进而证明,即可求得,勾股定理即可求得的长
【详解】
解:如图,设的交点为,
四边形是正方形
,,
,,
,,
在与中
在中,
故选C
【点睛】
本题考查了正方形的性质,勾股定理,全等三角形的性质与判定,掌握正方形的性质是解题的关键.
7、C
【解析】
【分析】
根据折叠和矩形的性质,可得∠DBE =∠CBD,AD∥BC,AD=BC,AB⊥AD,从而得到∠BDE=∠DBE,进而得到BE=DE,再由的面积是22.5,可得,然后根据勾股定理,即可求解.
【详解】
解:根据题意得: ∠DBE =∠CBD,AD∥BC,AD=BC,AB⊥AD,
∴∠BDE=∠CBD,
∴∠BDE=∠DBE,
∴BE=DE,
∵的面积是22.5,,
∴ ,解得: ,
∴,
在 中,由勾股定理得:
,
∴ .
故选:C
【点睛】
本题主要考查了折叠和矩形的性质,勾股定理,熟练掌握折叠和矩形的性质,勾股定理是解题的关键.
8、C
【解析】
【分析】
利用矩形的性质,直角三角形的性质,正方形的判定,菱形的性质依次判断可求解.
【详解】
解;矩形的对角线相等,故选项A不符合题意;
直角三角形斜边上的中线等于斜边的一半,故选项B不符合题意;
对角线互相垂直且相等的四边形不一定是正方形,故选项C符合题意;
菱形的对角线互相垂直,故选项D不符合题意;
故选:C.
【点睛】
本题考查了正方形的判定,矩形的性质,菱形的性质,直角三角形的性质,熟练运用这些性质解决问题是本题的关键.
9、A
【解析】
【分析】
根据作图信息可以判断出OP平分,由此可以逐一判断即可.
【详解】
解:由作图可知,平分
∴OP垂直平分线段CD
∴∠AOP=∠BOP,CD⊥OP
故选项C,D正确;
由作图可知,
∴是等边三角形,
∴
∵OP垂直平分线段CD
∴
∴CP=2QC
故选项B正确,不符合题意;
由作图可知,,不能确定四边形OCPD是菱形,故选项A符合题意,
故选:A
【点睛】
本题考查了基本作图,解题的关键是熟练掌握作图的依据.
10、C
【解析】
【分析】
根据正方形的性质得到AB=AD,∠BAE=∠ADF=90°,根据全等三角形的性质得到∠ABE=∠DAF,求得∠AOB=90°,根据三角形的面积公式得到OA=1,由勾股定理即可得到答案.
【详解】
解:∵四边形ABCD是正方形,
∴AB=AD,∠BAE=∠ADF=90°,
在△ABE与△DAF中,
,
∴△ABE≌△DAF(SAS),
∴∠ABE=∠DAF,
∴∠ABE+∠BAO=∠DAF+∠BAO=90°,
∴∠AOB=90°,
∵△ABE≌△DAF,
∴S△ABE=S△DAF,
∴S△ABE-S△AOE=S△DAF-S△AOE,
即S△ABO=S四边形OEDF=1,
∵OA=1,
∴BO=2,
∴AB=,
故选:C.
【点睛】
本题考查了正方形的性质,全等三角形的判定和性质,勾股定理,证得△ABE≌△DAF是解题的关键.
二、填空题
1、 中位线 3
【解析】
略
2、3
【解析】
【分析】
根据平行四边形的性质可得,,结合图形,利用线段间的数量关系可得,由平行线及角平分线可得,,得出,根据等角对等边即可得出结果.
【详解】
解:∵四边形ABCD为平行四边形,
∴,,
∵,
∴,
∵,BE平分,
∴,,
∴,
∴,
故答案为:3.
【点睛】
题目主要考查平行四边形的性质,利用角平分线计算及平行线的性质,等角对等边求边长等,理解题意,结合图形,综合运用这些知识点是解题关键.
3、八
【解析】
【分析】
根据n边形从一个顶点出发可引出(n-3)条对角线,可组成(n-2)个三角形,依此可得n的值,即得出答案.
【详解】
解:由题意得,n-2=6,
解得:n=8,
故答案为:八.
【点睛】
本题考查了多边形的对角线,解题的关键是熟知一个n边形从一个顶点出发,可将n边形分割成(n-2)个三角形.
4、①③
【解析】
【分析】
只要证明,,是的中位线即可一一判断;
【详解】
解:如图延长交于,交于.设交于.
,,
,
,,
,故①正确,
,,
,
,
,
不垂直,故②错误,
,
,
,,
,
,
是等腰直角三角形,平分,
,
,
,
,
,故③正确,
,
,
,
,
,故④正确.
故答案是:①③.
【点睛】
本题考查等腰直角三角形的性质和判定、全等三角形的判定和性质、三角形中位线定理等知识,解题的关键是正确寻找全等三角形解决问题,属于中考选择题中的压轴题.
5、
【解析】
【分析】
根据n边形从一个顶点出发可引出(n﹣3)条对角线可直接得到答案.
【详解】
解:从八边形的一个顶点可引出的对角线的条数有8﹣3=5(条),
故答案为:5.
【点睛】
此题主要考查了多边形的对角线,关键是掌握计算方法.
三、解答题
1、20条
【解析】
【分析】
多边形的内角和可以表示成(n-2)•180°,外角和是固定的360°,根据正多边形内角和与外角和的差等于720°,列方程求出正多边形的边数.然后根据n边形共有条对角线,得出此正多边形的所有对角线的条数.
【详解】
解:设此正多边形为正n边形.
由题意得:,
解得n=8,
∴此正多边形所有的对角线条数为:=20.
答:这个正多边形的所有对角线有20条.
【点睛】
此题考查多边形的边数与对角线条数,一元一次方程,解题关键在于掌握多边形内角和公式和外角和,以及对角线条数计算公式..
2、 (1)
(2)
(3)
(4)
3、 (1)-3,3,1,3,-3,-1
(2)①-2;②
(3)或
【解析】
【分析】
(1)分别以、、为对角线,利用平行四边形以及平移的性质可得点,,的坐标;
(2)①根据平行公理得,、在同一直线上,、、在同一直线上,可得是等腰三角形△的中位线,求出,即可得的值;
②由①求得的的值可得,的坐标,分别求出直线过点,时的值即可求解;
(3)由题意用表示出点,,的坐标,画出图形,求出直线与△交于点,时的值即可求解.
(1)
解:,,
,轴.
以为对角线时,
四边形是平行四边形,
,,
将向左平移2个单位长度可得,即;
以为对角线时,
四边形是平行四边形,
,,
将向右平移2个单位长度可得,即;
以为对角线时,
四边形是平行四边形,
对角线的中点与的中点重合,
的中点为,,
.
故答案为:,,;
(2)
解:①如图,若△是以为底的等腰三角形,
四边形,,是平行四边形,
,,,
、、在同一直线上,、、在同一直线上,,
是等腰三角形△的中位线,
,,
,,,
,
;
②由①得,
,.
当直线过点时,,解得:,
当直线过点时,,解得:,
的取值范围为;
(3)
解:如图,,,,
,.
连接、交于点,
四边形是平行四边形,
点、关于点对称,
,
直线与△有公共点,
当直线与△交于点,,解得:,
时,直线与△有公共点;
当直线与△交于点,,解得:,
时,直线与△有公共点;
综上,的取值范围为或.
【点睛】
本题考查了平行四边形的性质,坐标与图形性质,平移的性质,一次函数的性质,一次函数图象上点的坐标特征等知识,解题的关键是利用数形结合与分类讨论的思想进行求解.
4、 (1)见解析
(2)见解析
【解析】
【分析】
(1)延长CB到E使CE=CD,然后作∠ABC的平分线交AD的延长线于F;
(2)先根据平行四边形的性质得到AD=BC,AB=CD,ADBC,则CE=AB,再证明∠ABF=∠F得到AB=AF,然后证明BE=DF,从而可判断四边形BEDF为平行四边形.
(1)
如图,DE、BF为所作;
(2)
证明:∵四边形ABCD为平行四边形,
∴AD=BC,AB=CD,AD∥BC,
∵CE=CD,
∴CE=AB,
∵BF平分∠ABC,
∴∠ABF=∠CBF,
∵AFBC,
∴∠CBF=∠F,
∴∠ABF=∠F,
∴AB=AF,
∴CE=AF,即CB+BE=AD+DF,
∴BE=DF,
∵BEDF,
∴四边形BEDF为平行四边形.
【点睛】
本题考查了作线段,作角平分线,平行四边形的性质与判定,掌握以上知识是解题的关键.
5、见解析
【解析】
【分析】
根据平行四边形的性质可得AB∥CD,AB=CD,根据平行线的性质可得∠BAE=∠CFE,根据中点的定义可得EB=EC,利用AAS可证明△ABE≌△FCE,可得AB=CF,进而可得结论.
【详解】
∵四边形ABCD是平行四边形,
∴AB∥CD,AB=CD,
∴∠BAE=∠CFE;
∵E为BC中点,
∴EB=EC,
在△ABE与△FCE中,
,
∴△ABE≌△FCE(AAS),
∴AB=CF,
∴DC=CF.
【点睛】
本题考查平行四边形的性质及全等三角形的判定与性质,熟练掌握相关性质及判定定理是解题关键.
初中冀教版第二十二章 四边形综合与测试精练: 这是一份初中冀教版第二十二章 四边形综合与测试精练,共29页。
初中数学冀教版八年级下册第二十二章 四边形综合与测试习题: 这是一份初中数学冀教版八年级下册第二十二章 四边形综合与测试习题,共27页。
2020-2021学年第二十二章 四边形综合与测试课后练习题: 这是一份2020-2021学年第二十二章 四边形综合与测试课后练习题,共28页。