![2021-2022学年度强化训练冀教版八年级数学下册第二十二章四边形综合训练试卷(精选含答案)第1页](http://img-preview.51jiaoxi.com/2/3/12735243/0/0.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![2021-2022学年度强化训练冀教版八年级数学下册第二十二章四边形综合训练试卷(精选含答案)第2页](http://img-preview.51jiaoxi.com/2/3/12735243/0/1.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![2021-2022学年度强化训练冀教版八年级数学下册第二十二章四边形综合训练试卷(精选含答案)第3页](http://img-preview.51jiaoxi.com/2/3/12735243/0/2.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
冀教版八年级下册第二十二章 四边形综合与测试优秀一课一练
展开
这是一份冀教版八年级下册第二十二章 四边形综合与测试优秀一课一练,共25页。试卷主要包含了在中,若,则的度数是,如图,已知矩形ABCD中,R等内容,欢迎下载使用。
八年级数学下册第二十二章四边形综合训练 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、如图,在正方形ABCD中,对角线AC与BD相交于点O,E为BC上一点,CE=6,F为DE的中点.若OF的长为1,则△CEF的周长为( )A.14 B.16 C.18 D.122、下列说法不正确的是( )A.三角形的外角大于每一个与之不相邻的内角B.四边形的内角和与外角和相等C.等边三角形是轴对称图形,对称轴只有一条D.全等三角形的周长相等,面积也相等3、六边形对角线的条数共有( )A.9 B.18 C.27 D.544、在中,若,则的度数是( )A. B. C. D.5、如图,在中,,于E,DE交AC于点F,M为AF的中点,连接DM,若,则的大小为( ).A.112° B.108° C.104° D.98°6、小明想判断家里的门框是否为矩形,他应该( )A.测量三个角是否都是直角 B.测量对角线是否互相平分C.测量两组对边是否分别相等 D.测量一组对角是否是直角7、如图,已知矩形ABCD中,R、P分别是DC、BC上的点,E、F分别是AP、RP的中点,当P在BC上从B向C移动而R不动时,那么下列结论成立的是( )A.线段EF的长逐渐增大 B.线段EF的长逐渐减小C.线段EF的长不改变 D.线段EF的长不能确定8、在四边形ABCD中,对角线AC,BD互相平分,若添加一个条件使得四边形ABCD是菱形,则这个条件可以是( )A.∠ABC=90° B.AC⊥BD C.AB=CD D.AB∥CD9、若菱形的周长为8,高为2,则菱形的面积为( )A.2 B.4 C.8 D.1610、下列命题中,是真命题的是( ).A.三角形的外心是三角形三个内角角平分线的交点B.满足的三个数,,是勾股数C.对角线相等的四边形各边中点连线所得四边形是矩形D.五边形的内角和为第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、平行四边形的性质:平行四边形的两组对边分别________;平行四边形的两组对角分别________;平行四边形的对角线________.2、两组对边分别________的四边形叫做平行四边形.3、如图,矩形的两条对角线相交于点,已知,,则矩形对角线的长为_______.4、如图,点M,N分别是的边AB,AC的中点,若,,则______.5、如图,矩形纸片,,.如果点在边上,将纸片沿折叠,使点落在点处,如果直线经过点,那么线段的长是_______.三、解答题(5小题,每小题10分,共计50分)1、如图,在矩形ABCD中,(1)尺规作图(不写作法,保留作图痕迹):作对角线BD的垂直平分线EF分别交AD、BC于E、F点,交BD于O点.(2)在(1)的条件下,求证:AE=CF.2、如图,直线,线段分别与直线、交于点、点,满足.(1)使用尺规完成基本作图:作线段的垂直平分线交于点,交于点,交线段于点,连接、、、.(保留作图痕迹,不写做法,不下结论)(2)求证:四边形为菱形.(请补全下面的证明过程)证明:____①____垂直平分,∴____②________③____∴四边形是___④_____∴四边形是菱形(______⑤__________)(填推理的依据).3、如图,在中,,,E、F分别为AB、CD边上两点,FB平分.(1)如图1,若,,求CD的长;(2)如图2,若G为EF上一点,且,求证:.4、(1)【发现证明】如图1,在正方形中,点,分别是,边上的动点,且,求证:.小明发现,当把绕点顺时针旋转90°至,使与重合时能够证明,请你给出证明过程.(2)【类比引申】①如图2,在正方形中,如果点,分别是,延长线上的动点,且,则(1)中的结论还成立吗?若不成立,请写出,,之间的数量关系______(不要求证明)②如图3,如果点,分别是,延长线上的动点,且,则,,之间的数量关系是______(不要求证明)(3)【联想拓展】如图1,若正方形的边长为6,,求的长.5、如图,在中,于点E,延长BC至点F,使,连接AF,DE,DF.(1)求证:四边形AEFD为矩形;(2)若,,,求DF的长. -参考答案-一、单选题1、B【解析】【分析】根据中位线的性质及直角三角形斜边上中线的性质可得:,结合图形得出的周长为,再由中位线的性质得出,在中,利用勾股定理确定,即可得出结论.【详解】解:在正方形ABCD中,,,,∵F为DE的中点,O为BD的中点,∴OF为的中位线且CF为斜边上的中线,∴,∴的周长为,∵,∴,∵,∴,∴,在中,,,,∴,∴的周长为,故选:B.【点睛】题目主要考查正方形的性质,三角形中位线的性质,勾股定理,直角三角形斜边中线的性质等,理解题意,熟练掌握运用各个知识点是解题关键.2、C【解析】【分析】根据三角形外角的性质,四边形内角和定理和外角和定理,等边三角形的对称性,全等三角形的性质判断即可.【详解】∵三角形的外角大于每一个与之不相邻的内角,正确,∴A不符合题意;∵四边形的内角和与外角和都是360°,∴四边形的内角和与外角和相等,正确,∴B不符合题意;∵等边三角形是轴对称图形,对称轴有三条,∴等边三角形是轴对称图形,对称轴只有一条,错误,∴C符合题意;∵全等三角形的周长相等,面积也相等,正确,∴D不符合题意;故选C.【点睛】本题考查了三角形外角的性质,四边形的内角和,外角和定理,等边三角形的对称性,全等三角形的性质,准确相关知识是解题的关键.3、A【解析】【分析】n边形对角线的总条数为:(n≥3,且n为整数),由此可得出答案.【详解】解:六边形的对角线的条数= =9.故选:A.【点睛】本题考查了多边形的对角线的知识,属于基础题,解答本题的关键是掌握:n边形对角线的总条数为:(n≥3,且n为整数).4、B【解析】【分析】利用平行四边形的对角相等即可选择正确的选项.【详解】解:四边形是平行四边形,,,,故选:B.【点睛】本题考查了平行四边形的性质,解题的关键是记住平行四边形的性质,属于中考基础题.5、C【解析】【分析】根据平行四边形及垂直的性质可得为直角三角形,再由直角三角形中斜边上的中线等于斜边的一半可得,由等边对等角及三角形外角的性质得出,根据三角形内角和定理即可得出.【详解】解:∵四边形ABCD为平行四边形,∴,∵,∴,∴为直角三角形,∵M为AF的中点,∴,∴,,∵,∴,∴,∴,故选:C.【点睛】题目主要考查平行四边形的性质,直角三角形中斜边上的中线等于斜边的一半,等边对等角及三角形外角的性质和三角形内角和定理,理解题意,综合运用这些知识点是解题关键.6、A【解析】【分析】根据矩形的判定方法解题.【详解】解:A、三个角都是直角的四边形是矩形,选项A符合题意;B、对角线互相平分的四边形是平行四边形,选项B不符合题意,C、两组对边分别相等的四边形是平行四边形,选项C不符合题意;D、一组对角是直角的四边形不是矩形,选项D不符合题意;故选:A.【点睛】本题考查矩形的判定方法,是重要考点,掌握相关知识是解题关键.7、C【解析】【分析】因为R不动,所以AR不变.根据中位线定理,EF不变.【详解】解:连接AR.因为E、F分别是AP、RP的中点,则EF为的中位线,所以,为定值.所以线段的长不改变.故选:C.【点睛】本题考查了三角形的中位线定理,只要三角形的边AR不变,则对应的中位线的长度就不变.8、B【解析】略9、B【解析】【分析】根据周长求出边长,利用菱形的面积公式即可求解.【详解】∵菱形的周长为8,∴边长=2,∴菱形的面积=2×2=4,故选:B.【点睛】此题考查菱形的性质,熟练掌握菱形的面积=底×高是解题的关键.10、D【解析】【分析】正确的命题是真命题,根据定义解答.【详解】解:A. 三角形的外心是三角形三条边垂直平分线的交点,故该项不符合题意;B. 满足的三个正整数,,是勾股数,故该项不符合题意;C. 对角线相等的四边形各边中点连线所得四边形是菱形,故该项不符合题意;D. 五边形的内角和为,故该项符合题意;故选:D.【点睛】此题考查了真命题的定义,正确掌握三角形外心的定义,勾股数的定义,中点四边形的判定定理及多边形内角和的计算公式是解题的关键.二、填空题1、 相等 相等 互相平分【解析】略2、平行【解析】略3、5【解析】【分析】由矩形的性质可证△AOB为等边三角形,可求BO=AB的长,即可求BD的长.【详解】解:∵四边形ABCD是矩形,∴AO=CO=BO=DO,∵∠AOD=120°,∴∠AOB=60°,且AO=BO,∴△ABO为等边三角形,∴AO=BO=AB=2.5,∴BD=5,故答案为:5.【点睛】本题考查矩形的性质,熟练掌握矩形的性质是本题的关键,①矩形的对边平行且相等;②矩形的四个角都是直角;③矩形的对角线相等且互相平分.4、45°##45度【解析】【分析】根据三角形中位线定理得出,进而利用平行线的性质解答即可.【详解】解:、分别是的边、的中点,,,,,,,故答案是:.【点睛】本题考查三角形中位线定理,解题的关键是根据三角形中位线定理得出.5、【解析】【分析】根据题意可知∠AFD=90°,利用勾股定理得DF=,再证明AD=DE,即可得出EF的长,从而解决问题.【详解】如图,∵将纸片沿AE折叠,使点B落在点F处,∴AB=AF=3,∠B=∠AFE=90°,∠AEB=∠AED,∵AD∥BC,∴∠DAE=∠AED,∴∠DAE=∠AED,∴AD=DE=4,在Rt△ADF中,由勾股定理得:,∴EF=DE-DF=,∴BE=EF=,故答案为:.【点睛】本题主要考查了翻折变换,勾股定理,等腰三角形的判定,平行线的性质等知识,证明AD=DE是解题的关键.三、解答题1、 (1)见解析(2)见解析【解析】【分析】(1)利用尺规作出图形即可.(2)利用全等三角形的性质证明即可.(1)解:如图,直线EF即为所求作..(2)证明:在矩形ABCD中,AD=BC,∠ADB=∠DBC,∵EF为BD的垂直平分线,∴∠EOD=∠FOB=90°,OB=OD,在△EOD与△FOB中,,∴△EOD≌△FOB(ASA),∴ED=BF,∴AD-ED=BC-BF,即AE=CF.【点睛】本题考查了作图-复杂作图,线段的垂直平分线,全等三角形的判定和性质等知识,解题的关键是理解题意,灵活运用所学知识解决问题.2、 (1)见解析(2)①;②;③;④平行四边形;⑤对角线互相垂直的平行四边形是菱形【解析】【分析】(1)分别以A、D为圆心,大于AD的一半长为半径,画弧,两弧交于两点,然后过这两点作直线交l1于E,交l2于F,直线EF为线段AD的垂直平分线,连接、、、即可;(2):根据,内错角相等得出∠2①,根据垂直平分 ,得出,,可证②△EOC,根据全等三角形性质得出OF③,再证,根据对角线互相平分的四边形是平行四边形判定四边形是平行四边形④,根据对角线互相垂直即可得出四边形是菱形(对角线互相垂直的平行四边形是菱形⑤).(1)解:分别以A、D为圆心,大于AD的一半长为半径,画弧,两弧交于两点,然后过这两点作直线交l1于E,交l2于F,直线EF为线段AD的垂直平分线,连接、、、即可;如图所示(2)证明:,∠2①,垂直平分 ,,,∴②△EOC,OF③,,,,∴四边形是平行四边形④,,∴四边形是菱形(对角线互相垂直的平行四边形是菱形⑤),故答案为:①;②;③;④平行四边形;⑤对角线互相垂直的平行四边形是菱形.【点睛】本题考查尺规作图,垂直平分线性质,三角形全等判定与性质,菱形的判定,掌握尺规作图,垂直平分线性质,三角形全等判定与性质,菱形的判定是解题关键.3、 (1)7(2)见解析【解析】【分析】(1)根据平行四边形的性质,可得AB∥CD,AB=CD,可得∠EBF=∠CFB,再由∵FB平分,可得∠EFB=∠EBF,从而得到BE=EF=5,即可求解;(2)再CF上截取FN=FG,可得,从而得到∠BGF=∠BNF,再由∠GBF=∠EFD,可得到∠BFD=∠BNC,再根据BC⊥BD,∠BCD=45°,可得BC=BD,从而证得△BDF≌△BCN,进而得到NC=FD,即可求证.(1)解:在中,AB∥CD,AB=CD, ∴∠EBF=∠CFB,∵FB平分,∴∠EFB=∠CFB,∴∠EFB=∠EBF,∴BE=EF=5,∵AE=2,∴CD=AB=AE+BE=7;(2)证明:如图,再CF上截取FN=FG,∵,∴ ,∴∠BGF=∠BNF,∵ ,∠BFG+∠BGF+∠GBF=180°,∠GBF=∠EFD,∴∠BGF=∠BFN,∴∠BFN=∠BNF,∴∠BFD=∠BNC,∵BC⊥BD,∴∠CBD=90°,∵∠BCD=45°,∴∠BDC=∠BCD=45°,∴BC=BD,∴△BDF≌△BCN(AAS),∴NC=FD,∴CD=DF+FN+CN=2FD+FG,∵AB=CD,∴FG+2FD=AB.【点睛】本题主要考查了平行四边形的性质,全等三角形的判定和性质,等腰三角形的性质,熟练掌握平行四边形的性质,全等三角形的判定和性质,等腰三角形的性质是解题的关键.4、(1)见解析;(2)①不成立,结论:;②,见解析;(3)【解析】【分析】(1)证明,可得出,则结论得证;(2)①将绕点顺时针旋转至根据可证明,可得,则结论得证;②将绕点逆时针旋转至,证明,可得出,则结论得证;(3)求出,设,则,,在中,得出关于的方程,解出则可得解.【详解】(1)证明:把绕点顺时针旋转至,如图1,,,,,,,三点共线,,,,,,,,;(2)①不成立,结论:;证明:如图2,将绕点顺时针旋转至,,,,,,,,;②如图3,将绕点逆时针旋转至,,,,,,,,,.即.故答案为:.(3)解:由(1)可知,正方形的边长为6,,.,,设,则,,在中,,,解得:.,.【点睛】本题属于四边形综合题,主要考查了正方形的性质、旋转的性质、全等三角形的判定与性质以及勾股定理的综合应用,解题的关键是作辅助线构造全等三角形,根据全等三角形的对应边相等进行推导.5、 (1)见解析(2)【解析】【分析】(1)根据线段的和差关系可得BC=EF,根据平行四边形的性质可得AD∥BC,AD=BC,即可得出AD=EF,可证明四边形AEFD为平行四边形,根据AE⊥BC即可得结论;(2)根据矩形的性质可得AF=DE,可得△BAF为直角三角形,利用“面积法”可求出AE的长,即可得答案.(1)∵BE=CF,∴BE+CE=CF+CE,即BC=EF,∵ABCD是平行四边形,∴AD∥BC,AD=BC,∴AD=EF,∵AD∥EF,∴四边形AEFD为平行四边形,∵AE⊥BC,∴∠AEF=90°,∴四边形AEFD为矩形.(2)∵四边形AEFD为矩形,∴AF=DE=4,DF=AE,∵,,,∴AB2+AF2=BF2,∴△BAF为直角三角形,∠BAF=90°,∴,∴AE=,∴.【点睛】本题考查平行四边形的性质、矩形的判定与性质及勾股定理的逆定理,熟练掌握相关性质及判定定理是解题关键.
相关试卷
这是一份冀教版八年级下册第二十二章 四边形综合与测试随堂练习题,共30页。试卷主要包含了六边形对角线的条数共有等内容,欢迎下载使用。
这是一份初中数学冀教版八年级下册第二十二章 四边形综合与测试习题,共27页。
这是一份初中数学冀教版八年级下册第二十二章 四边形综合与测试课后作业题,共32页。试卷主要包含了下列说法正确的是等内容,欢迎下载使用。
![文档详情页底部广告位](http://img.51jiaoxi.com/images/257d7bc79dd514896def3dc0b2e3f598.jpg)