搜索
    上传资料 赚现金
    英语朗读宝

    2021-2022学年基础强化冀教版八年级数学下册第二十二章四边形专项训练练习题(精选)

    2021-2022学年基础强化冀教版八年级数学下册第二十二章四边形专项训练练习题(精选)第1页
    2021-2022学年基础强化冀教版八年级数学下册第二十二章四边形专项训练练习题(精选)第2页
    2021-2022学年基础强化冀教版八年级数学下册第二十二章四边形专项训练练习题(精选)第3页
    还剩26页未读, 继续阅读
    下载需要20学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    冀教版第二十二章 四边形综合与测试精品精练

    展开

    这是一份冀教版第二十二章 四边形综合与测试精品精练,共29页。试卷主要包含了下列关于的叙述,正确的是等内容,欢迎下载使用。
    八年级数学下册第二十二章四边形专项训练 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。I卷(选择题  30分)一、单选题(10小题,每小题3分,共计30分)1、一个多边形的每个内角均为150°,则这个多边形是(       A.九边形 B.十边形 C.十一边形 D.十二边形2、下列命题是真命题的有(  )个.①一组对边相等的四边形是矩形;②两条对角线相等的四边形是矩形;③四条边都相等且对角线互相垂直的四边形是正方形;④四条边都相等的四边形是菱形;⑤一组邻边相等的矩形是正方形.A.1 B.2 C.3 D.43、如图,在△ABC中,AB=3,AC=4,BC=5,△ABD,△ACE,△BCF都是等边三角形,下列结论中:①ABAC;②四边形AEFD是平行四边形;③∠DFE=150°;④SAEFD=8.错误的个数是(  )A.1个 B.2个 C.3个 D.4个4、如图,在矩形ABCD中,动点P从点A出发,沿ABC运动,设,点D到直线PA的距离y,且y关于x的函数图象如图所示,则当的面积相等时,y的值为(       A. B. C. D.5、在菱形ABCD中,对角线ACBD相交于点O,如果AC=6,BD=8,那么菱形ABCD的面积是(  )A.6 B.12 C.24 D.486、如图①,在ABCD中,动点P从点B出发,沿折线BCDB运动,设点P经过的路程为xABP的面积为yyx的函数,函数的图象如图②所示,则图②中的a值为(  )A.3 B.4 C.14 D.187、如图,平行四边形ABCD中,AD=5,AB=3,AE平分∠BADBC边于点E,则EC等于(  )A.1 B.2 C.3 D.48、下列关于的叙述,正确的是(       A.若,则是矩形 B.若,则是正方形C.若,则是菱形 D.若,则是正方形9、下面性质中,平行四边形不一定具备的是(  )A.对角互补 B.邻角互补C.对角相等 D.对角线互相平分10、如图,点ABC在同一直线上,且,点DE分别是ABBC的中点.分别以ABDEBC为边,在AC同侧作三个正方形,得到三个平行四边形(阴影部分)的面积分别记作,若,则等于(       A. B. C. D.第Ⅱ卷(非选择题  70分)二、填空题(5小题,每小题4分,共计20分)1、三角形的各边长分别是8、10、12、则连接各边中点所得的三角形的周长是___.2、一个多边形的内角和是外角和的2倍,则这个多边形的边数为_____.3、如图,将长方形ABCD沿AEEF翻折使其BC重合于点H,点D落在点G的位置,HEAD交于点P,连接HF,当时,则PHF的距离是______.4、如图,在平行四边形ABCD中,对角线ACBD交于点OACABAB,且ACBD=2:3,那么AC的长为___.5、已知平行四边形ABCD的周长是30,若AB=10,则BC=________.三、解答题(5小题,每小题10分,共计50分)1、【问题情境】如图1,在中,,垂足为D,我们可以得到如下正确结论:①;②;③,这些结论是由古希酷著名数学家欧几里得在《几何原本》最先提出的,我们称之为“射影定理”,又称“欧几里德定理”.(1)请证明“射影定理”中的结论③(2)【结论运用】如图2,正方形的边长为6,点O是对角线的交点,点E上,过点C,垂足为F,连接①求证:②若,求的长.2、已知:线段m求作:矩形ABCD,使矩形宽ABm,对角线ACm3、如图,在中,EF分别为ABCD边上两点,FB平分(1)如图1,若,求CD的长;(2)如图2,若GEF上一点,且,求证:4、(1)【发现证明】如图1,在正方形中,点分别是边上的动点,且,求证:.小明发现,当把绕点顺时针旋转90°至,使重合时能够证明,请你给出证明过程.(2)【类比引申】①如图2,在正方形中,如果点分别是延长线上的动点,且,则(1)中的结论还成立吗?若不成立,请写出之间的数量关系______(不要求证明)②如图3,如果点分别是延长线上的动点,且,则之间的数量关系是______(不要求证明)(3)【联想拓展】如图1,若正方形的边长为6,,求的长.5、如图,将△ABC放在每个小正方形的边长为1的网格中,点A,点B,点C均落在格点上.(1)计算AC2+BC2的值等于_____;(2)请在如图所示的网格中,用无刻度的直尺,画出一个以AB为一边的矩形,使该矩形的面积等于AC2+BC2,并简要说明画图方法(不要求证明)_____. -参考答案-一、单选题1、D【解析】【分析】先求出多边形的外角度数,然后即可求出边数.【详解】解:∵多边形的每个内角都等于150°,∴多边形的每个外角都等于180°-150°=30°,∴边数n=360°÷30°=12,故选:D.【点睛】本题考查多边形的内角和、外角来求多边形的边数,属于基础题,熟练掌握多边形中内角和定理公式是解决本类题的关键.2、B【解析】【分析】根据两条对角线平分且相等的四边形是矩形,四条边都相等的四边形是菱形,如果对角线互相垂直平分且相等,那么这个四边形是正方形进行判断即可.【详解】解:①一组对边相等的四边形不一定是矩形,错误;②两条对角线相等的平行四边形是矩形,错误;③四条边都相等且对角线互相垂直的四边形是菱形,错误;④四条边都相等的四边形是菱形,正确;⑤一组邻边相等的矩形是正方形,正确.故选:B.【点睛】此题考查考查平行四边形、矩形、菱形、正方形的判定方法,关键是根据矩形、正方形、菱形的判定解答.3、A【解析】【分析】利用勾股定理逆定理证得△ABC是直角三角形,由此判断①;证明△ABC≌△DBF得到DFAE,同理可证:△ABC≌△EFC,得到EFAD,由此判断②;由②可判断③;过AAGDFG,求出AG即可求出 SAEFD,判断④.【详解】解:∵AB3AC432+4252AB2+AC2BC2∴△ABC是直角三角形,∠BAC90°,ABAC,故正确;∵△ABD,△ACE都是等边三角形,∴∠DAB=∠EAC60°,∴∠DAE150°,∵△ABD和△FBC都是等边三角形,BDBABFBC∴∠DBF=∠ABC在△ABC与△DBF中,∴△ABC≌△DBFSAS),ACDFAE4同理可证:△ABC≌△EFCSAS),ABEFAD3∴四边形AEFD是平行四边形,故正确;∴∠DFE=∠DAE150°,故正确;AAGDFG,如图所示:则∠AGD90°,∵四边形AEFD是平行四边形,∴∠FDA180°﹣∠DFE180°﹣150°=30°,AGADSAEFDDFAG4×6;故④错误;∴错误的个数是1个,故选:A【点睛】此题考查了等边三角形的性质,勾股定理的逆定理,全等三角形的判定及性质,平行四边形的判定及性质,直角三角形的30度角的性质,熟练掌握各知识点是解题的关键.4、D【解析】【分析】先结合图象分析出矩形ADAB边长分别为4和3,当△PCD和△PAB的面积相等时可知P点为BC中点,利用面积相等求解y值.【详解】解:当P点在AB上运动时,D点到AP的距离不变始终是AD长,从图象可以看出AD=4,P点到达B点时,从图象看出x=3,即AB=3.当△PCD和△PAB的面积相等时,P点在BC中点处,此时△ADP面积为RtABP中,由面积相等可知:,解得故选:D.【点睛】本题主要考查了函数图形的认识,分析图象找到对应的矩形的边长,解决动点问题就是“动中找静”,结合图象找到“折点处的数据真正含义”便可解决问题.5、C【解析】【分析】利用菱形的面积公式即可求解.【详解】解:菱形ABCD的面积==24,故选:C.【点睛】本题考查菱形的面积公式,菱形的面积等于对角线乘积的一半.6、A【解析】【分析】由图②知,BC=6,CD=14-6=8,BD=18-14=4,再通过解直角三角形,求出CBD高,进而求解.【详解】解:由图②知,BC=6,CD=14-6=8,BD=18-14=4,过点BBHDC于点HCH=x,则DH=8-xBH2=BC2-CH2=BD2-DH2,即:BH2=42-(8-x2=62-x2解得:则:故选:A.【点睛】本题考查的是动点图象问题,此类问题关键是:弄清楚不同时间段,图象和图形的对应关系,进而求解.7、B【解析】【分析】根据平行四边形及平行线的性质可得,再由角平分线及等量代换得出,利用等角对等边可得,结合图形即可得出线段长度.【详解】解:∵四边形ABCD为平行四边形,AE平分故选:B.【点睛】题目主要考查 平行四边形及平行线的性质,利用角平分线计算,等角对等边等,理解题意,熟练运用平行四边形的性质是解题关键.8、A【解析】【分析】由菱形的判定方法、矩形的判定方法、正方形的判定方法得出选项错误,正确;即可得出结论.【详解】解:中,四边形是矩形,选项符合题意;中,四边形是菱形,不一定是正方形,选项不符合题意;中,四边形是矩形,不一定是菱形,选项不符合题意;中,四边形是菱形,选项不符合题意;故选:【点睛】本题考查了平行四边形的性质、菱形的判定方法、矩形的判定方法、正方形的判定方法;熟练掌握矩形、菱形、正方形的判定方法是解决问题的关键.9、A【解析】【分析】直接利用平行四边形的性质:对角相等、对角线互相平分、对边平行且相等,进而分析得出即可.【详解】解:A、平行四边形对角不一定互补,故符合题意;B、平行四边形邻角互补正确,故不符合题意;C、平行四边形对角相等正确,故不符合题意.D、平行四边形的对角线互相平分正确,故不符合题意;故选A.【点睛】此题主要考查了平行四边形的性质,熟练掌握相关性质是解题关键.10、B【解析】【分析】BEx,根据正方形的性质、平行四边形的面积公式分别表示出S1S2S3,根据题意计算即可.【详解】 AB=2BC又∵点DE分别是ABBC的中点,∴设BEx,则ECxADBD=2x∵四边形ABGF是正方形,∴∠ABF=45°,∴△BDH是等腰直角三角形,BDDH=2xS1DHAD,即2x•2xx2BD=2xBExS2MHBD=(3x−2x)•2x=2x2S3ENBExxx2S2S3=2x2x2=3x2故选:B【点睛】本题考查的是正方形的性质、平行四边形的性质,掌握正方形的四条边相等、四个角都是90°是解题的关键.二、填空题1、15【解析】【分析】由中点和中位线定义可得新三角形的各边长为原三角形各边长的一半,即可求其周长.【详解】解:如图,DEF分别是△ABC的三边的中点,DE=ACDF=BCEF=AB∴△DEF的周长=DE+DF+EF=AC+BC+AB)=×(8+10+12)cm=15cm故答案为15.【点睛】本题考查了三角形的中位线定理,熟记三角形的中位线平行于第三边并且等于第三边的一半可得中点三角形的周长等于原三角形的周长的一半是解题的关键.2、6【解析】【分析】利用多边形的外角和以及多边形的内角和定理即可解决问题.【详解】解:多边形的外角和是360度,多边形的内角和是外角和的2倍,则内角和是720度,这个多边形的边数为6.故答案为:6.【点睛】本题主要考查了多边形的内角和定理与外角和定理,解题的关键是熟练掌握多边形的外角和以及多边形的内角和定理.3、【解析】【分析】连接FC,过点H,过点P,线段PM长度即为所求,根据折叠及矩形的性质可得,由全等三角形及平行线的判定得出,点AHG三点共线,且,点HAG中点,设,则,利用勾股定理可得,由三角形中位线的判定及性质可得,最后在两个三角形中,利用等面积法求解即可得.【详解】解:如图所示:连接FC,过点H,过点P,线段PM长度即为所求,长方形ABCD沿AEEF翻折使其BC重合于点H,点D落在点G的位置,AHG三点共线,且,点HAG中点,,则中,解得:且点HAG中点,HP中位线,中,,即,即解得:故答案为:【点睛】题目主要考查矩形及图形折叠的性质,全等三角形的性质及平行线的判定,中位线的判定和性质,勾股定理等,理解题意,作出辅助线,综合运用这些知识点是解题关键.4、4【解析】【分析】四边形是平行四边形,可得,由,可知,由可知在中勾股定理求解的值,进而求解的值.【详解】解:∵四边形是平行四边形∴设解得:故答案为:4.【点睛】本题考查了勾股定理,平行四边形的性质等知识.解题的关键在于正确的求解.5、5【解析】三、解答题1、 (1)见解析;(2)①见解析;②【解析】【分析】(1)由AA证明,再由相似三角形对应边称比例得到,继而解题;(2)①由“射影定理”分别解得,整理出,再结合即可证明②由勾股定理解得,再根据得到,代入数值解题即可.(1)证明:(2)四边形ABCD是正方形中,【点睛】本题考查相似三角形的综合题,涉及勾股定理、正方形等知识,是重要考点,掌握相关知识是解题关键.2、见详解【解析】【分析】先作m的垂直平分线,取m的一半为AB,然后以点A为圆心,以m长为半径画弧,交m的垂直平分线于C,连结AC,利用作一个角等于已知角,过ABC的平行线AD,过CAB的平行线CD,两线交于D即可.【详解】解:先作m的垂直平分线,取m的一半为AB以点A为圆心,以m长为半径画弧,交m的垂直平分线于C,连结ACABC的平行线,与过CAB的平行线交于D则四边形ABCD为所求作矩形; ADBCCDAB∴四边形ABCD为平行四边形,BCAB∴∠ABC=90°,∴四边形ABCD为矩形,AB=AC=m,∴矩形的宽与对角线满足条件,∴四边形ABCD为所求作矩形.【点睛】本题考查矩形作图,线段垂直平分线,作线段等于已知线段,平行线作法,掌握矩形作图,线段垂直平分线,作线段等于已知线段,平行线作法是解题关键.3、 (1)7(2)见解析【解析】【分析】(1)根据平行四边形的性质,可得ABCDAB=CD,可得∠EBF=∠CFB,再由∵FB平分,可得∠EFB=∠EBF,从而得到BE=EF=5,即可求解;(2)再CF上截取FN=FG,可得,从而得到∠BGF=∠BNF,再由∠GBF=∠EFD,可得到∠BFD=∠BNC,再根据BCBD,∠BCD=45°,可得BC=BD,从而证得△BDF≌△BCN,进而得到NC=FD,即可求证.(1)解:在中,ABCDAB=CD∴∠EBF=∠CFBFB平分∴∠EFB=∠CFB∴∠EFB=∠EBFBE=EF=5,AE=2,CD=AB=AE+BE=7;(2)证明:如图,再CF上截取FN=FG∴∠BGF=∠BNF ,∠BFG+∠BGF+∠GBF=180°,∠GBF=∠EFD∴∠BGF=∠BFN∴∠BFN=∠BNF∴∠BFD=∠BNCBCBD∴∠CBD=90°,∵∠BCD=45°,∴∠BDC=∠BCD=45°,BC=BD∴△BDF≌△BCNAAS),NC=FDCD=DF+FN+CN=2FD+FGAB=CDFG+2FD=AB【点睛】本题主要考查了平行四边形的性质,全等三角形的判定和性质,等腰三角形的性质,熟练掌握平行四边形的性质,全等三角形的判定和性质,等腰三角形的性质是解题的关键.4、(1)见解析;(2)①不成立,结论:;②,见解析;(3)【解析】【分析】(1)证明,可得出,则结论得证;(2)①将绕点顺时针旋转根据可证明,可得,则结论得证;②将绕点逆时针旋转,证明,可得出,则结论得证;(3)求出,设,则,在中,得出关于的方程,解出则可得解.【详解】(1)证明:把绕点顺时针旋转,如图1,三点共线,(2)①不成立,结论:证明:如图2,将绕点顺时针旋转②如图3,将绕点逆时针旋转故答案为:(3)解:由(1)可知正方形的边长为6,,则中,解得:【点睛】本题属于四边形综合题,主要考查了正方形的性质、旋转的性质、全等三角形的判定与性质以及勾股定理的综合应用,解题的关键是作辅助线构造全等三角形,根据全等三角形的对应边相等进行推导.5、     11     见解析【解析】【分析】(1)直接利用勾股定理求出即可;(2)首先分别以ACBCAB为一边作正方形ACED,正方形BCNM,正方形ABHF;进而得出答案.【详解】解:(1)AC2+BC2=(2+32=11;故答案为:11;(2)分别以ACBCAB为一边作正方形ACED,正方形BCNM,正方形ABHF延长DEMN于点Q,连接QC,平移QCAGBP位置,直线GP分别交AFBH于点TS,则四边形ABST即为所求,如图,【点睛】本题考查了勾股定理,无刻度直尺作图,平行四边形与矩形的性质,掌握勾股定理以及特殊四边形的性质是解题的关键. 

    相关试卷

    初中数学冀教版八年级下册第二十二章 四边形综合与测试随堂练习题:

    这是一份初中数学冀教版八年级下册第二十二章 四边形综合与测试随堂练习题,共24页。试卷主要包含了如图,在中,DE平分,,则,如图,在正方形ABCD中,点E等内容,欢迎下载使用。

    数学冀教版第二十二章 四边形综合与测试课时练习:

    这是一份数学冀教版第二十二章 四边形综合与测试课时练习,共28页。

    冀教版八年级下册第二十二章 四边形综合与测试课堂检测:

    这是一份冀教版八年级下册第二十二章 四边形综合与测试课堂检测,共25页。试卷主要包含了如图,已知矩形ABCD中,R等内容,欢迎下载使用。

    文档详情页底部广告位
    • 课件
    • 教案
    • 试卷
    • 学案
    • 其他
    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map