![2021-2022学年冀教版八年级数学下册第二十二章四边形专项攻克试题(含解析)第1页](http://img-preview.51jiaoxi.com/2/3/12735320/0/0.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![2021-2022学年冀教版八年级数学下册第二十二章四边形专项攻克试题(含解析)第2页](http://img-preview.51jiaoxi.com/2/3/12735320/0/1.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![2021-2022学年冀教版八年级数学下册第二十二章四边形专项攻克试题(含解析)第3页](http://img-preview.51jiaoxi.com/2/3/12735320/0/2.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
初中数学冀教版八年级下册第二十二章 四边形综合与测试精品课时练习
展开
这是一份初中数学冀教版八年级下册第二十二章 四边形综合与测试精品课时练习,共27页。试卷主要包含了如图,在正方形ABCD中,点E,已知,如图,在中,DE平分,,则等内容,欢迎下载使用。
八年级数学下册第二十二章四边形专项攻克 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、如图,E、F分别是正方形ABCD的边CD、BC上的点,且,AF、BE相交于点G,下列结论中正确的是( )①;②;③;④.A.①②③ B.①②④ C.①③④ D.②③④2、如图,矩形中,,如果将该矩形沿对角线折叠,那么图中阴影部分的面积是22.5,则( )A.8 B.10 C.12 D.143、如图,四边形ABCD的对角线交于点O,下列哪组条件不能判断四边形ABCD是平行四边形( )A.OA=OC,OB=OD B.AB=CD,AO=COC.AB=CD,AD=BC D.∠BAD=∠BCD,AB∥CD4、如图,在正方形ABCD中,点E、点F分别在AD、CD上,且AE=DF,若四边形OEDF的面积是1,OA的长为1,则正方形的边长AB为( )A.1 B.2 C. D.25、如图,点D,E分别是△ABC边BA,BC的中点,AC=3,则DE的长为( )A.2 B. C.3 D.6、如图,菱形ABCD的对角线AC和BD相交于点O,,,E是OB的中点,P是CD的中点,连接PE,则线段PE的长为( )A. B. C. D.7、如图,平行四边形ABCD的边BC上有一动点E,连接DE,以DE为边作矩形DEGF且边FG过点A.在点E从点B移动到点C的过程中,矩形DEGF的面积( )A.先变大后变小 B.先变小后变大 C.一直变大 D.保持不变8、已知:在△ABC中,AC=BC,点D、E分别是边AB、AC的中点,延长DE至点F,使得EF=DE,那么四边形AFCD一定是( )A.菱形 B.矩形 C.直角梯形 D.等腰梯形9、如图,在中,DE平分,,则( )A.30° B.45° C.60° D.80°10、如图.在长方形纸片ABCD中,AB=12,AD=20,所示,折叠纸片,使点A落在BC边上的A′处,折痕为PQ,当点A′在BC边上移动时,折痕的端点P、Q也随之移动.点P,Q分别在边AB、AD上移动,则点A′在BC边上可移动的最大距离为( )A.8 B.10 C.12 D.16第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、如图,,D为外一点,且交的延长线于E点,若,则_______.2、两组对边分别________的四边形叫做平行四边形.3、将矩形纸片ABCD(AB<BC)沿过点B的直线折叠,使点A落在BC边上的点F处,折痕为BE(如图1);再沿过点E的直线折叠,使点D落在BE上的点D'处,折痕为EG(如图2):再展开纸片(如图3),则图3中∠FEG的大小是__.4、如图,将边长为2的正方形OABC放在平面直角坐标系中,O是原点,点A的横坐标为1,则点C的坐标为______.5、如图,在矩形中,,点在边上,联结.如果将沿直线翻折,点恰好落在线段上,那么 的值为_________.三、解答题(5小题,每小题10分,共计50分)1、如图所示,在每个小正方形的边长均为1的网格中,线段AB的端点A、B均在小正方形的顶点上.(1)在图中画出等腰△ABC,且△ABC为钝角三角形,点C在小正方形顶点上;(2)在(1)的条件下确定点C后,再画出矩形BCDE,D,E都在小正方形顶点上,且矩形BCDE的周长为16,直接写出EA的长为 .2、如图,直线,线段分别与直线、交于点、点,满足.(1)使用尺规完成基本作图:作线段的垂直平分线交于点,交于点,交线段于点,连接、、、.(保留作图痕迹,不写做法,不下结论)(2)求证:四边形为菱形.(请补全下面的证明过程)证明:____①____垂直平分,∴____②________③____∴四边形是___④_____∴四边形是菱形(______⑤__________)(填推理的依据).3、如图,在四边形ABCD中,AB=AD,AD//BC(1)在图中,用尺规作线段BD的垂直平分线EF,分别交BD、BC于点E、F.(保留作图痕迹,不写作法)(2)连接DF,证明四边形ABFD为菱形.4、如图,已知矩形ABCD(AB<AD).E是BC上的点,AE=AD.(1)在线段CD上作一点F,连接EF,使得∠EFC=∠BEA(请用直尺和圆规作图,保留作图痕迹);(2)在(1)作出的图形中,若AB=4,AD=5,求DF的值.5、已知正方形与正方形,,.(1)如图1,若点和点重合,点在线段上,点在线段的延长线上,连接、、,将阴影部分三角形的面积记作,则 (用含有、的代数式表示).(2)如图2,若点与点重合,点在线段上,点在线段的延长线上,连接、、,将阴影部分三角形的面积记作,则 (用含有、的代数式表示).(3)如图3,若将正方形沿正方形的边所在直线平移,使得点、在线段上(点不与点重合、点不与点重合),连接、、,设,将阴影部分三角形的面积记作,则 (用含有、、的代数式表示).(4)如图4,若将正方形沿正方形的边所在直线平移,使得点、在的延长线上,连接、、,设,将阴影部分三角形的面积记作,则 (用含有、、的代数式表示). -参考答案-一、单选题1、B【解析】【分析】根据正方形的性质及全等三角形的判定定理和性质、垂直的判定依次进行判断即可得.【详解】解:∵四边形ABCD是正方形,∴,,在与中,,∴,∴,①正确;∵,,∴,∴,∴,②正确;∵GF与BG的数量关系不清楚,∴无法得AG与GE的数量关系,③错误;∵,∴,∴,即,④正确;综上可得:①②④正确,故选:B.【点睛】题目主要考查全等三角形的判定和性质,正方形的性质,垂直的判定等,理解题意,综合运用全等三角形全等的判定和性质是解题关键.2、C【解析】【分析】根据折叠和矩形的性质,可得∠DBE =∠CBD,AD∥BC,AD=BC,AB⊥AD,从而得到∠BDE=∠DBE,进而得到BE=DE,再由的面积是22.5,可得,然后根据勾股定理,即可求解.【详解】解:根据题意得: ∠DBE =∠CBD,AD∥BC,AD=BC,AB⊥AD,∴∠BDE=∠CBD,∴∠BDE=∠DBE,∴BE=DE,∵的面积是22.5,,∴ ,解得: ,∴,在 中,由勾股定理得: ,∴ .故选:C【点睛】本题主要考查了折叠和矩形的性质,勾股定理,熟练掌握折叠和矩形的性质,勾股定理是解题的关键.3、B【解析】略4、C【解析】【分析】根据正方形的性质得到AB=AD,∠BAE=∠ADF=90°,根据全等三角形的性质得到∠ABE=∠DAF,求得∠AOB=90°,根据三角形的面积公式得到OA=1,由勾股定理即可得到答案.【详解】解:∵四边形ABCD是正方形,∴AB=AD,∠BAE=∠ADF=90°,在△ABE与△DAF中,,∴△ABE≌△DAF(SAS),∴∠ABE=∠DAF,∴∠ABE+∠BAO=∠DAF+∠BAO=90°,∴∠AOB=90°,∵△ABE≌△DAF,∴S△ABE=S△DAF,∴S△ABE-S△AOE=S△DAF-S△AOE,即S△ABO=S四边形OEDF=1,∵OA=1,∴BO=2,∴AB=,故选:C.【点睛】本题考查了正方形的性质,全等三角形的判定和性质,勾股定理,证得△ABE≌△DAF是解题的关键.5、D【解析】略6、A【解析】【分析】取OD的中点H,连接HP,由菱形的性质可得AC⊥BD,AO=CO=4,OB=OD=6,由三角形中位线定理可得,,可得EH=6,,由勾股定理可求PE的长.【详解】解:如图,取OD的中点H,连接HP∵四边形ABCD是菱形∴AC⊥BD,AO=CO=4,OB=OD=6∵点H是OD中点,点E是OB的中点,点P是CD的中点∴OH=3,OE=3,,∴EH=6,在中,由勾股定理可得:∴故选:A【点睛】本题考查了菱形的性质,三角形中位线定理,勾股定理,添加恰当辅助线构造直角三角形是解题的关键.7、D【解析】【分析】连接AE,根据,推出,由此得到答案.【详解】解:连接AE,∵,∴,故选:D..【点睛】此题考查了平行四边形的性质,矩形的性质,正确连接辅助线AE是解题的关键.8、B【解析】【分析】先证明四边形ADCF是平行四边形,再证明AC=DF即可.【详解】解:∵E是AC中点,∴AE=EC,∵DE=EF,∴四边形ADCF是平行四边形,∵AD=DB,AE=EC,∴DE=BC,∴DF=BC,∵CA=CB,∴AC=DF,∴四边形ADCF是矩形;故选:B.【点睛】本题考查了矩形的判定、等腰三角形的性质、平行四边形的判定、三角形中位线定理;熟记对角线相等的平行四边形是矩形是解决问题的关键.9、C【解析】【分析】根据平行四边形的性质得,故,由DE平分得,即可计算.【详解】∵四边形ABCD是平行四边形,∴,∴,∵DE平分,∴,∴.故选:C.【点睛】本题考查平行四边形的性质,平行线的性质以及角平分线的定义,掌握平行四边形的性质是解题的关键.10、A【解析】【分析】根据翻折的性质,可得BA′与AP的关系,根据线段的和差,可得A′C,根据勾股定理,可得A′C,根据线段的和差,可得答案.【详解】解:①在长方形纸片ABCD中,AB=12,AD=20,∴BC=AD=20,当p与B重合时,BA′=BA=12,CA′=BC-BA′=20-12=8,②当Q与D重合时,由折叠得A′D=AD=20,由勾股定理,得CA′==16,CA′最远是16,CA′最近是8,点A′在BC边上可移动的最大距离为16-8=8,故选:A.【点睛】本题考查了矩形的性质,翻折变换,利用了翻折的性质,勾股定理,分类讨论是解题关键.二、填空题1、2【解析】【分析】过点D作DM⊥CB于M,证出∠DAE=∠DBM,判定△ADE≌△BDM,得到DM=DE=3,证明四边形CEDM是矩形,得到CE=DM=3,由AE=1,求出BC=AC=2.【详解】解:∵DE⊥AC,∴∠E=∠C=90°,∴,过点D作DM⊥CB于M,则∠M=90°=∠E,∵AD=BD,∴∠BAD=∠ABD,∵AC=BC,∴∠CAB=∠CBA,∴∠DAE=∠DBM,∴△ADE≌△BDM,∴DM=DE=3,∵∠E=∠C=∠M =90°,∴四边形CEDM是矩形,∴CE=DM=3,∵AE=1,∴BC=AC=2,故答案为:2.【点睛】此题考查了全等三角形的判定及性质,矩形的判定及性质,等边对等角证明角度相等,正确引出辅助线证明△ADE≌△BDM是解题的关键.2、平行【解析】略3、22.5°【解析】【分析】根据折叠的性质可知,∠A=∠EFB=90°,AB=BF,以及纸片ABCD为矩形可得,∠AEF为直角,进而可以判断四边形ABFE为正方形,进而通过∠AEB,∠BEG的角度计算出∠FEG的大小.【详解】解:由折叠可知△AEB≌△FEB,∴∠A=∠EFB=90°,AB=BF,∵纸片ABCD为矩形,∴AE∥BF,∴∠AEF=180°-∠BFE=90°,∵AB=BF,∠A=∠AEF=∠EFB=90°,∴四边形ABFE为正方形,∴∠AEB=45°,∴∠BED=180°-45°=135°,∴∠BEG=135°÷2=67.5°,∴∠FEG=67.5°-45°=22.5°.【点睛】本题考查折叠的性质,矩形的性质,正方形的判定与性质,以及平行的相关性质,能够将正方形与矩形的性质相结合是解决本题的关键.4、(-,1)【解析】【分析】首先过点C作CD⊥x轴于点D,过点A作AE⊥x轴于点E,易证得△AOE≌△OCD(AAS),则可得CD=OE=1,OD=AE=,继而求得答案.【详解】解:过点C作CD⊥x轴于点D,过点A作AE⊥x轴于点E,则∠ODC=∠AEO=90°,∴∠OCD+∠COD=90°,∵四边形OABC是正方形,∴OC=OA,∠AOC=90°,∴∠COD+∠AOE=90°,∴∠OCD=∠AOE,在△AOE和△OCD中,,∴△AOE≌△OCD(AAS),∴CD=OE=1,OD=AE=,∴点C的坐标为:(-,1).故答案为:(-,1).【点睛】本题考查了正方形的性质、全等三角形的判定与性质以及勾股定理.注意准确作出辅助线、证得△AOE≌△OCD是解此题的关键.5、【解析】【分析】先根据翻折的性质得出AD′=AD=5,DP=PD′,,然后在Rt△ABF中由勾股定理求出BD′=4,D′C=1,设DP=x,则D′P=x,PC=3-x,在RtCD′P中,由勾股定理求出列方程求出x即可,然后利用三角形的面积公式求出S△ADP和的面积即可.【详解】解:∵AB=3,BC=5,∴DC=3,AD=5,又∵将△ADP折叠使点D恰好落在BC边上的点D′,∴AD′=AD=5,DP=PD′,在Rt△ABD′中,AB=3,AD′=5,∴BD′==4,∴D′C=5-4=1,设DP=x,则D′P=x,PC=3-x,在Rt△CD′P中,D′P2=D′C2+PC2,即x2=12+(3-x)2,解得x=,即DP的长为,∵AD=5,∴S△ADP=×DP×AD=××5=,=3×5-=,∴=,故答案为:.【点睛】本题考查了折叠的性质:折叠前后两图形全等,即对应角相等,对应线段相等,也考查了矩形的性质以及勾股定理.三、解答题1、 (1)见解析(2)画图见解析,【解析】【分析】(1)作出腰为5且∠ABC是钝角的等腰三角形ABC即可;(2)作出边长分别为5,3的矩形ABDE即可.(1)解:如图,AB==BC,∠ABC>90°,所以△ABC即为所求;(2)解:如图,矩形BCDE即为所求.AE= .故答案为:.【点睛】本题考查作图-应用与设计作图,等腰三角形的判定,矩形的判定,勾股定理等知识,解题的关键是学会利用数形结合的思想解决问题,属于中考常考题型.2、 (1)见解析(2)①;②;③;④平行四边形;⑤对角线互相垂直的平行四边形是菱形【解析】【分析】(1)分别以A、D为圆心,大于AD的一半长为半径,画弧,两弧交于两点,然后过这两点作直线交l1于E,交l2于F,直线EF为线段AD的垂直平分线,连接、、、即可;(2):根据,内错角相等得出∠2①,根据垂直平分 ,得出,,可证②△EOC,根据全等三角形性质得出OF③,再证,根据对角线互相平分的四边形是平行四边形判定四边形是平行四边形④,根据对角线互相垂直即可得出四边形是菱形(对角线互相垂直的平行四边形是菱形⑤).(1)解:分别以A、D为圆心,大于AD的一半长为半径,画弧,两弧交于两点,然后过这两点作直线交l1于E,交l2于F,直线EF为线段AD的垂直平分线,连接、、、即可;如图所示(2)证明:,∠2①,垂直平分 ,,,∴②△EOC,OF③,,,,∴四边形是平行四边形④,,∴四边形是菱形(对角线互相垂直的平行四边形是菱形⑤),故答案为:①;②;③;④平行四边形;⑤对角线互相垂直的平行四边形是菱形.【点睛】本题考查尺规作图,垂直平分线性质,三角形全等判定与性质,菱形的判定,掌握尺规作图,垂直平分线性质,三角形全等判定与性质,菱形的判定是解题关键.3、 (1)见解析(2)见解析【解析】【分析】(1)直接利用线段垂直平分线的作法得出答案;(2)结合垂直平分线的性质得出△ADE≌△FBE,即可得出AE=EF,进而利用菱形的判定方法得出答案.(1)(1)如图:EF即为所求作(2)证明:如图,连接DF,∵AD//BC,∴∠ADE=∠EBF,∵AF垂直平分BD,∴BE=DE.在△ADE和△FBE中,,∴△ADE≌△FBE(ASA),∴AE=EF,∴BD与AF互相垂直且平分,∴四边形ABFD为菱形.【点睛】此题主要考查了菱形的判定以及线段垂直平分线的性质与作法,正确应用线段垂直平分线的性质是解题关键.4、 (1)见解析(2)【解析】【分析】(1)作∠DAE的角平分线,与DC的交点即为所求,理由:可先证明△AEF≌△ADF,可得∠AEF=∠D=90°,从而得到∠DAE+∠DFE=180°,进而得到∠EFC=∠DAE,再由AD∥BC,即可求解;(2)根据矩形的性质可得∠B=∠C=∠D=90°,AD=BC=5,AB=CD=4,从而得到BE=3,进而得到EC=2,然后在 中,由勾股定理,即可求解.(1)解:如图,作∠DAE的角平分线,与DC的交点即为所求.∵AE=AD,∠EAF=∠DAF,AF=AF,∴△AEF≌△ADF,∴∠AEF=∠D=90°,∴∠DAE+∠DFE=180°,∵∠EFC+∠DFE=180°,∴∠EFC=∠DAE,∵在矩形ABCD中,AD∥BC,∴∠BEA=∠DAE,∴∠EFC=∠BEA;(2)解:∵四边形ABCD是矩形,∴∠B=∠C=∠D=90°,AD=BC=5,AB=CD=4,∵AE=AD=5,∴BE===3,∴EC=BC﹣BE=5﹣3=2,由(1)得:△AEF≌△ADF,∴ ,在 中, ,∴ ,∴ .【点睛】本题主要考查了矩形的性质,全等三角形的判定和性质,勾股定理等知识,熟练掌握矩形的性质,全等三角形的判定和性质,勾股定理是解题的关键.5、 (1)(2)(3)(4)
相关试卷
这是一份数学八年级下册第二十二章 四边形综合与测试优秀当堂检测题,共30页。试卷主要包含了下列说法不正确的是等内容,欢迎下载使用。
这是一份2021学年第二十二章 四边形综合与测试精品随堂练习题,共31页。试卷主要包含了六边形对角线的条数共有等内容,欢迎下载使用。
这是一份初中数学冀教版八年级下册第二十二章 四边形综合与测试精品练习题,共26页。试卷主要包含了如图,菱形的对角线等内容,欢迎下载使用。
![英语朗读宝](http://img.51jiaoxi.com/images/27f0ad84943772f8cdf3a353ba2877c5.jpg)