终身会员
搜索
    上传资料 赚现金
    2021-2022学年最新冀教版八年级数学下册第二十二章四边形定向攻克练习题(含详解)
    立即下载
    加入资料篮
    2021-2022学年最新冀教版八年级数学下册第二十二章四边形定向攻克练习题(含详解)01
    2021-2022学年最新冀教版八年级数学下册第二十二章四边形定向攻克练习题(含详解)02
    2021-2022学年最新冀教版八年级数学下册第二十二章四边形定向攻克练习题(含详解)03
    还剩34页未读, 继续阅读
    下载需要20学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    冀教版八年级下册第二十二章 四边形综合与测试优秀课堂检测

    展开
    这是一份冀教版八年级下册第二十二章 四边形综合与测试优秀课堂检测,共37页。试卷主要包含了如图,已知矩形ABCD中,R等内容,欢迎下载使用。

    八年级数学下册第二十二章四边形定向攻克
    考试时间:90分钟;命题人:数学教研组
    考生注意:
    1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
    2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
    3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
    第I卷(选择题 30分)
    一、单选题(10小题,每小题3分,共计30分)
    1、如图,平面直角坐标系xOy中,点A是直线上一动点,将点A向右平移1个单位得到点B,点C(1,0),则OB+CB的最小值为( )

    A. B. C. D.
    2、平行四边形ABCD中,若∠A=2∠B,则∠C的度数为(  )
    A.120° B.60° C.30° D.15°
    3、如图,平行四边形ABCD的对角线AC,BD相交于点O,下列结论错误的是(  )

    A.AO=CO B.AD∥BC C.AD=BC D.∠DAC=∠ACD
    4、如图,在▱ABCD中,对角线AC、BD相交于点O,过点O作OE⊥AC,交AD于点E,连接CE,若△CDE的周长为8,则▱ABCD的周长为( )

    A.8 B.10 C.16 D.20
    5、如图,已知长方形,,分别是,上的点,,分别是,的中点,当点在上从点向点移动,而点不动时,那么下列结论成立的是( )

    A.线段的长逐渐增大 B.线段的长逐渐减少
    C.线段的长不变 D.线段的长先增大后变小
    6、如图,已知矩形ABCD中,R、P分别是DC、BC上的点,E、F分别是AP、RP的中点,当P在BC上从B向C移动而R不动时,那么下列结论成立的是( )

    A.线段EF的长逐渐增大 B.线段EF的长逐渐减小
    C.线段EF的长不改变 D.线段EF的长不能确定
    7、如图,在正方形ABCD中,对角线AC与BD相交于点O,E为BC上一点,CE=6,F为DE的中点.若OF的长为1,则△CEF的周长为( )

    A.14 B.16 C.18 D.12
    8、如图,在正方形ABCD中,AB=3,点E,F分别在边AB,CD上,∠EFD=60°.若将四边形EBCF沿EF折叠,点B′恰好落在AD边上,则BE的长度为( )

    A.1 B. C. D.2
    9、下列命题中,是真命题的是( ).A.三角形的外心是三角形三个内角角平分线的交点
    B.满足的三个数,,是勾股数
    C.对角线相等的四边形各边中点连线所得四边形是矩形
    D.五边形的内角和为
    10、如图,正方形ABCD的两条对角线AC,BD相交于点O,点E在BD上,且BE=AD,则∠ACE的度数为(   )

    A.22.5° B.27.5° C.30° D.35°
    第Ⅱ卷(非选择题 70分)
    二、填空题(5小题,每小题4分,共计20分)
    1、在平面直角坐标系中,直线l:与x轴交于点,如图所示依次作正方形、正方形、…、正方形,使得点、、、…在直线1上,点、、、…在y轴正半轴上,则点的坐标是________.

    2、如图,正方形ABCD的边长为,作正方形A1B1C1D1,使A,B,C,D是正方形A1B1C1D1,各边的中点;做正方形A2B2C2D2,使A1,B1,C1,D1是正方形A2B2C2D2各边的中点…以此类推,则正方形A2021B2021C2021D2021的边长为 _____.

    3、如图,在中,,,射线AF是的平分线,交BC于点D,过点B作AB的垂线与射线AF交于点E,连结CE,M是DE的中点,连结BM并延长与AC的延长线交于点G.则下列结论正确的是______.

    ① ②BG垂直平分DE ③ ④ ⑤
    4、定义:在平面内,一个点到图形的距离是这个点到这个图上所有点的最短距离,在平面内有一个正方形,边长为6,中心为O,在正方形外有一点P,,当正方形绕着点O旋转时,则点P到正方形的最短距离d的最大值为______.

    5、(1)平行四边形的对边________.
    几何语言:因为四边形ABCD是平行四边形,所以AB=________,AD=________. 

    (2)平行四边形的对角________.
    几何语言:因为四边形ABCD是平行四边形,所以∠A=________,∠B=________.
    三、解答题(5小题,每小题10分,共计50分)
    1、如图,正方形ABCD和正方形CEFG,点G在CD上,AB=5,CE=2,T为AF的中点,求CT的长.

    2、如图,在平行四边形ABCD中,点M是AD边的中点,连接BM,CM,且BM=CM.

    (1)求证:四边形ABCD是矩形;
    (2)若△BCM是直角三角形,直接写出AD与AB之间的数量关系.
    3、已知:△ABC,AD为BC边上的中线,点M为AD上一动点(不与点A重合),过点M作ME∥AB,过点C作CE∥AD,连接AE.

    (1)如图1,当点M与点D重合时,求证:①△ABM≌△EMC;②四边形ABME是平行四边形
    (2)如图2,当点M不与点D重合时,试判断四边形ABME还是平行四边形吗?如果是,请给出证明;如果不是,请说明理由;
    (3)如图3,延长BM交AC于点N,若点M为AD的中点,求的值.
    4、背景资料:在已知所在平面上求一点P,使它到三角形的三个顶点的距离之和最小.这个问题是法国数学家费马1640年前后向意大利物理学家托里拆利提出的,所求的点被人们称为“费马点”.如图1,当三个内角均小于120°时,费马点P在内部,当时,则取得最小值.

    (1)如图2,等边内有一点P,若点P到顶点A、B、C的距离分别为3,4,5,求的度数,为了解决本题,我们可以将绕顶点A旋转到处,此时这样就可以利用旋转变换,将三条线段、、转化到一个三角形中,从而求出_______;
    知识生成:怎样找三个内角均小于120°的三角形的费马点呢?为此我们只要以三角形一边在外侧作等边三角形并连接等边三角形的顶点与的另一顶点,则连线通过三角形内部的费马点.请同学们探索以下问题.
    (2)如图3,三个内角均小于120°,在外侧作等边三角形,连接,求证:过的费马点.
    (3)如图4,在中,,,,点P为的费马点,连接、、,求的值.
    (4)如图5,在正方形中,点E为内部任意一点,连接、、,且边长;求的最小值.
    5、尺规作图并回答问题:(保留作图痕迹)
    已知:如图,四边形ABCD是平行四边形.
    求作:菱形AECF,使点E,F分别在BC,AD上.
    请回答:在你的作法中,判定四边形AECF是菱形的依据是   .


    -参考答案-
    一、单选题
    1、A
    【解析】
    【分析】
    设D(﹣1,0),作D点关于直线的对称点E,连接OE,交直线于A,连接AD,,作ES⊥x轴于S,根据题意OE就是OB+CB的最小值,由直线的解析式求得F的坐标,进而求得ED的长,从而求得OS和ES,然后根据勾股定理即可求得OE.
    【详解】
    解:设D(﹣1,0),作D点关于直线的对称点E,连接OE,交直线于A,连接AD,,交于点,作ES⊥x轴于S,

    ∵AB∥DC,且AB=OD=OC=1,
    ∴四边形ABOD和四边形ABCO是平行四边形,
    ∴AD=OB,OA=BC,
    ∴AD+OA=OB+BC,
    ∵AE=AD,
    ∴AE+OA=OB+BC,
    即OE=OB+BC,
    ∴OB+CB的最小值为OE,
    由,
    当时,,
    解得:,


    当时,,



    取的中点,过作轴的垂线交于,


    当时,,



    为的中点,

    为等边三角形,




    ∴FD=3,∠FDG=60°,
    ∴DG=DF=,
    ∴DE=2DG=3,
    ∴ES=DE=,DS=DE=,
    ∴OS=,
    ∴OE==,
    ∴OB+CB的最小值为,
    故选:A.
    【点睛】
    本题考查了一次函数的性质,轴对称﹣最短路线问题以及平行四边形的性质、勾股定理的应用,解题的关键是证得OE是OB+CB的最小值.
    2、A
    【解析】
    【分析】
    根据平行四边形的性质得出BCAD,根据平行线的性质推出∠A+∠B=180°,代入求出即可.
    【详解】
    解:∵四边形ABCD是平行四边形,

    ∴BCAD,
    ∴∠A+∠B=180°,
    把∠A=2∠B代入得:3∠B=180°,
    ∴∠B=60°,
    ∴∠C=120°
    故选:A.
    【点睛】
    本题主要考查对平行四边形的性质,平行线的性质等知识点的理解和掌握,能推出∠A+∠B=180°是解此题的关键.
    3、D
    【解析】
    【分析】
    根据平行四边形的性质解答.
    【详解】
    解:∵四边形ABCD是平行四边形,
    ∴AO=OC,故A正确;
    ∴,故B正确;
    ∴AD=BC,故C正确;
    故选:D.
    【点睛】
    此题考查了平行四边形的性质,熟记平行四边形的性质是解题的关键.
    4、C
    【解析】
    【分析】
    根据线段垂直平分线的判定和性质,可得AE=CE,又由CE+DE+CD=8,即AD+CD=8,继而可得ABCD的周长.
    【详解】
    解:∵四边形ABCD是平行四边形,
    ∴OA=OC,AB=CD,AD=BC,
    ∵OE⊥AC,
    ∴OE是线段AC的垂直平分线,
    ∴AE=CE,
    ∵△CDE的周长为8,
    ∴CE+DE+CD=8,即AD+CD =8,
    ∴平行四边形ABCD的周长为2(AD+CD)=16.
    故选:C.
    【点睛】
    本题考查了平行四边形的性质、线段垂直平分线的判定和性质,关键是根据线段垂直平分线的性质进行分析.此题难度不大,注意掌握数形结合思想的应用.
    5、C
    【解析】
    【分析】
    因为R不动,所以AR不变.根据三角形中位线定理可得EF=AR,因此线段EF的长不变.
    【详解】
    解:连接.

    、分别是、的中点,
    为的中位线,
    ,为定值.
    线段的长不改变.
    故选:.
    【点睛】
    本题考查了三角形的中位线定理,只要三角形的边AR不变,则对应的中位线的长度就不变.
    6、C
    【解析】
    【分析】
    因为R不动,所以AR不变.根据中位线定理,EF不变.
    【详解】
    解:连接AR.

    因为E、F分别是AP、RP的中点,
    则EF为的中位线,
    所以,为定值.
    所以线段的长不改变.
    故选:C.
    【点睛】
    本题考查了三角形的中位线定理,只要三角形的边AR不变,则对应的中位线的长度就不变.
    7、B
    【解析】
    【分析】
    根据中位线的性质及直角三角形斜边上中线的性质可得:,结合图形得出的周长为,再由中位线的性质得出,在中,利用勾股定理确定,即可得出结论.
    【详解】
    解:在正方形ABCD中,,,,
    ∵F为DE的中点,O为BD的中点,
    ∴OF为的中位线且CF为斜边上的中线,
    ∴,
    ∴的周长为,
    ∵,
    ∴,
    ∵,
    ∴,
    ∴,
    在中,,,,
    ∴,
    ∴的周长为,
    故选:B.
    【点睛】
    题目主要考查正方形的性质,三角形中位线的性质,勾股定理,直角三角形斜边中线的性质等,理解题意,熟练掌握运用各个知识点是解题关键.
    8、D
    【解析】
    【分析】
    由正方形的性质得出∠EFD=∠BEF=60°,由折叠的性质得出∠BEF=∠FEB'=60°,BE=B'E,设BE=x,则B'E=x,AE=3-x,由直角三角形的性质可得:2(3-x)=x,解方程求出x即可得出答案.
    【详解】
    解:∵四边形ABCD是正方形,
    ∴AB∥CD,∠A=90°,
    ∴∠EFD=∠BEF=60°,
    ∵将四边形EBCF沿EF折叠,点B'恰好落在AD边上,
    ∴∠BEF=∠FEB'=60°,BE=B'E,
    ∴∠AEB'=180°-∠BEF-∠FEB'=60°,
    ∴B'E=2AE,
    设BE=x,则B'E=x,AE=3-x,
    ∴2(3-x)=x,
    解得x=2.
    故选:D.
    【点睛】
    本题考查了正方形的性质,折叠的性质,含30°角的直角三角形的性质等知识点,能综合性运用性质进行推理是解此题的关键.
    9、D
    【解析】
    【分析】
    正确的命题是真命题,根据定义解答.
    【详解】
    解:A. 三角形的外心是三角形三条边垂直平分线的交点,故该项不符合题意;
    B. 满足的三个正整数,,是勾股数,故该项不符合题意;
    C. 对角线相等的四边形各边中点连线所得四边形是菱形,故该项不符合题意;
    D. 五边形的内角和为,故该项符合题意;
    故选:D.
    【点睛】
    此题考查了真命题的定义,正确掌握三角形外心的定义,勾股数的定义,中点四边形的判定定理及多边形内角和的计算公式是解题的关键.
    10、A
    【解析】
    【分析】
    利用正方形的性质证明∠DBC=45°和BE=BC,进而证明∠BEC=67.5°.
    【详解】
    解:∵四边形ABCD是正方形,
    ∴BC=AD,∠DBC=45°,
    ∵BE=AD,
    ∴BE=BC,
    ∴∠BEC=∠BCE=(180°﹣45°)÷2=67.5°,
    ∵AC⊥BD,
    ∴∠COE=90°,
    ∴∠ACE=90°﹣∠BEC=90°﹣67.5°=22.5°,
    故选:A.
    【点睛】
    本题考查正方形的性质,以及等腰三角形的性质,掌握正方形的性质并加以利用是解决本题的关键.
    二、填空题
    1、
    【解析】
    【分析】
    根据一次函数图象上点的坐标特征结合正方形的性质可得出点A1、B1的坐标,同理可得出A2、A3、A4、A5、…及B2、B3、B4、B5、…的坐标,根据点的坐标的变化可找出变化规律“Bn(2n-1,2n-1)(n为正整数)”,依此规律即可得出结论.
    【详解】
    解:当y=0时,有x-1=0,
    解得:x=1,
    ∴点A1的坐标为(1,0).
    ∵四边形A1B1C1O为正方形,
    ∴点B1的坐标为(1,1).
    同理,可得出:A2(2,1),A3(4,3),A4(8,7),A5(16,15),…,
    ∴B2(2,3),B3(4,7),B4(8,15),B5(16,31),…,
    ∴Bn(2n-1,2n-1)(n为正整数),
    故答案为:
    【点睛】
    本题考查了一次函数图象上点的坐标特征、正方形的性质以及规律型:点的坐标,根据点的坐标的变化找出变化规律“Bn(2n-1,2n-1)(n为正整数)”是解题的关键.
    2、
    【解析】
    【分析】
    根据勾股定理求得正方形对角线的长度,然后结合三角形中位线定理求得正方形的边长,从而探索数字变化的规律,进而求解.
    【详解】
    由题意得,正方形ABCD中
    CD=AD=
    在Rt△ACD中,
    AC==2
    ∵A,B,C,D是正方形各边的中点,
    ∴正方形的边长为2=
    在Rt△中
    ==2
    ∵是正方形各边中点
    ∴正方形的边长为2=
    以此类推
    则正方形的边长为
    故答案为:
    【点睛】
    本题考查勾股定理,正方形性质,探索数字变化的规律是解题关键.
    3、①②⑤
    【解析】
    【分析】
    先由题意得到∠ABE=∠ACB=∠BCG=90°,∠BAC=45°,再由角平分线的性质得到∠BAE=∠DAC=22.5°,从而推出∠BEA=∠ADC,则∠BDE=∠BED,再由三线合一定理即可证明BM⊥DE,∠GBE=∠DBG,即可判断②;得到∠MAG+∠MGA=90°,再由∠CBG+∠CGB=90°,可得∠DAC=∠GBC=22.5°,则∠GBE=22.5°,2∠GBE=45°,从而可证明△ACD≌△BCG,即可判断①;则CD=CG,再由AC=BC=BD+CD,可得到AC=BE+CG,即可判断⑤;由∠G=180°-∠BCG-∠CBG=67.5°,即可判断④;延长BE交AC延长线于G,先证△ABH是等腰直角三角形,得到C为AH的中点,然后证BE≠HE,即E不是BH的中点,得到CE不是△ABH的中位线,则CE与AB不平行,即可判断③.
    【详解】
    解:∵∠ACB=90°,BE⊥AB,AC=BC,
    ∴∠ABE=∠ACB=∠BCG=90°,∠BAC=45°,
    ∴∠BAE+∠BEA=90°,∠DAC+∠ADC=90°,
    ∵AF平分∠BAC,
    ∴∠BAE=∠DAC=22.5°,
    ∴∠BEA=∠ADC,
    又∵∠ADC=∠BDE,
    ∴∠BDE=∠BED,
    ∴BD=ED,
    又∵M是DE的中点,
    ∴BM⊥DE,∠GBE=∠DBG,
    ∴BG垂直平分DE,∠AMG=90°,故②正确,
    ∴∠MAG+∠MGA=90°,
    ∵∠CBG+∠CGB=90°,
    ∴∠DAC=∠GBC=22.5°,
    ∴∠GBE=22.5°,
    ∴2∠GBE=45°,
    又∵AC=BC,
    ∴△ACD≌△BCG(ASA),故①正确;
    ∴CD=CG,
    ∵AC=BC=BD+CD,
    ∴AC=BE+CG,故⑤正确;
    ∵∠G=180°-∠BCG-∠CBG=67.5°,
    ∴∠G≠2∠GBE,故④错误;
    如图所示,延长BE交AC延长线于G,
    ∵∠ABH=∠ABC+∠CBH=90°,∠BAC=45°,
    ∴△ABH是等腰直角三角形,
    ∵BC⊥AH,
    ∴C为AH的中点,
    ∵AB≠AH,AF是∠BAH的角平分线,
    ∴BE≠HE,即E不是BH的中点,
    ∴CE不是△ABH的中位线,
    ∴CE与AB不平行,
    ∴BE与CE不垂直,故③错误;
    故答案为:①②⑤.

    【点睛】
    本题主要考查了全等三角形的性质与判定,等腰三角形的性质与判定,三角形中位线定理,三角形内角和定理,熟知等腰三角形的性质与判定条件是解题的挂件.
    4、3
    【解析】
    【分析】
    由题意以及正方形的性质得OP过正方形ABCD各边的中点时,d最大,求出d的值即可得出答案
    【详解】
    解:如图:设AB的中点是E,OP过点E时,点O与边AB上所有点的连线中,OE最小,此时d=PE最大,

    ∵正方形ABCD边长为6,O为正方形中心,
    ∴AE=3,∠OAE=45°,OE⊥AB,
    ∴OE=3,
    ∵OP=6,
    ∴d=PE=6-3=3;
    故答案为:3
    【点睛】
    本题考查正方形的性质,旋转的性质,根据题意得出d最大时点P的位置是解题的关键.
    5、 相等 CD BC 相等 ∠C ∠D
    【解析】

    三、解答题
    1、
    【解析】
    【分析】
    连接AC,CF,如图,根据正方形的性质得到AC=,AB=5,CF=CE=2,∠ACD=45°,∠GCF=45°,则利用勾股定理得到AF=,然后根据直角三角形斜边上的中线性质得到CT的长.
    【详解】
    解:连接AC、CF,如图,

    ∵四边形ABCD和四边形CEFG都是正方形,
    ∴AC=AB=5,CF=CE=2,∠ACD=45°,∠GCF=45°,
    ∴∠ACF=45°+45°=90°,
    在Rt△ACF中,
    ∵T为AF的中点,
    ∴,
    ∴CT的长为.
    【点睛】
    本题考查了正方形的性质:正方形的四条边都相等,四个角都是直角;正方形的两条对角线相等,互相垂直平分,并且每条对角线平分一组对角;正方形具有四边形、平行四边形、矩形、菱形的一切性质,也考查了直角三角形斜边上的中线性质.
    2、 (1)见解析
    (2)AD=2AB,理由见解析
    【解析】
    【分析】
    (1)由SSS证明△ABM≌△DCM,得出∠A=∠D,由平行线的性质得出∠A+∠D=180°,证出∠A=90°,即可得出结论;
    (2)先证明△BCM是等腰直角三角形,得出∠MBC=45°,再证明△ABM是等腰直角三角形,得出AB=AM,即可得出结果.
    (1)
    证明:∵点M是AD边的中点,
    ∴AM=DM,
    ∵四边形ABCD是平行四边形,
    ∴AB=DC,AB∥CD,
    在△ABM和△DCM中,

    ∴△ABM≌△DCM(SSS),
    ∴∠A=∠D,
    ∵AB∥CD,
    ∴∠A+∠D=180°,
    ∴∠A=90°,
    ∵四边形ABCD是平行四边形,
    ∴四边形ABCD是矩形;
    (2)
    解:AD与AB之间的数量关系:AD=2AB,理由如下:
    ∵△BCM是直角三角形,BM=CM,
    ∴△BCM是等腰直角三角形,
    ∴∠MBC=45°,
    由(1)得:四边形ABCD是矩形,
    ∴AD∥BC,∠A=90°,
    ∴∠AMB=∠MBC=45°,
    ∴△ABM是等腰直角三角形,
    ∴AB=AM,
    ∵点M是AD边的中点,
    ∴AD=2AM,
    ∴AD=2AB.
    【点睛】
    本题考查了矩形的判定与性质、平行四边形的性质、平行线的性质、全等三角形的判定与性质、等腰直角三角形的的判定与性质等知识;熟练掌握平行四边形的性质,证明△ABM≌△DCM是解题的关键.
    3、 (1)①见解析;②见解析
    (2)是,见解析
    (3)
    【解析】
    【分析】
    (1)①根据DE∥AB,得出∠EDC=∠ABM,根据CE∥AM,∠ECD=∠ADB,根据AM是△ABC的中线,且D与M重合,得出BD=DC,再证△ABD≌△EDC(ASA)即可;
    ②由①得△ABD≌△EDC,得出AB=ED,根据AB∥ED,即可得出结论.
    (2)如图,设延长BM交EC于点F,过M作ML∥DC交CF于L,先证四边形MDCL为平行四边形,得出ML=DC=BD,可证△BMD≌△MFL(AAS),再证△ABM≌△EMF(ASA),可证四边形ABME是平行四边形;
    (3)过点D作DG∥BN交AC于点G,根据M为AD的中点,DG∥MN,得出MN为三角形中位线MN=DG,根据D为BC的中点,得出DG=BN,可得MN=BN,可求即可.
    (1)
    证明:①∵DE∥AB,
    ∴∠EDC=∠ABM,
    ∵CE∥AM,
    ∴∠ECD=∠ADB,
    ∵AM是△ABC的中线,且D与M重合,
    ∴BD=DC,
    在△ABD与△EDC中,

    ∴△ABD≌△EDC(ASA),
    即△ABM≌△EMC;
    ②由①得△ABD≌△EDC,
    ∴AB=ED,
    ∵AB∥ED,
    ∴四边形ABDE是平行四边形;

    (2)
    成立.理由如下:
    如图,设延长BM交EC于点F,过M作ML∥DC交CF于L,
    ∵AD∥EC,ML∥DC,
    ∴四边形MDCL为平行四边形,
    ∴ML=DC=BD,
    ∵ML∥DC,
    ∴∠FML=∠MBD,
    ∵AD∥EC,
    ∴∠BMD=∠MFL,∠AMB=∠EFM,
    在△BMD和△MFL中
    ∠MBD=∠FML∠BMD=∠MFLBD=ML,
    ∴△BMD≌△MFL(AAS),
    ∴BM=MF ,
    ∵AB∥ME,
    ∴∠ABM=∠EMF,
    在△ABM和△EMF中,

    ∴△ABM≌△EMF(ASA),
    ∴AB=EM,
    ∵AB∥EM,
    ∴四边形ABME是平行四边形;

    (3)
    解:过点D作DG∥BN交AC于点G,

    ∵M为AD的中点,DG∥MN,
    ∴MN=DG,
    ∵D为BC的中点,
    ∴DG=BN,
    ∴MN=BN,
    ∴,
    由(2)知四边形ABME为平行四边形,
    ∴BM=AE,
    ∴.
    【点睛】
    本题考查三角形中线性质,平行线性质,三角形全等判定与性质,平行四边形判定,三角形中位线性质,掌握三角形中线性质,平行线性质,三角形全等判定与性质,平行四边形判定,三角形中位线性质是解题关键.
    4、 (1)150°;
    (2)见详解;
    (3);
    (4).
    【解析】
    【分析】
    (1)根据旋转性质得出≌,得出∠BAP=∠CAP′,∠APB=∠AP′C,AP=AP′=3,BP=CP′=4,根据△ABC为等边三角形,得出∠BAC=60°,可证△APP′为等边三角形,PP′=AP=3,∠AP′P=60°,根据勾股定理逆定理,得出△PP′C是直角三角形,∠PP′C=90°,可求∠AP′C=∠APP+∠PPC=60°+90°=150°即可;
    (2)将△APB逆时针旋转60°,得到△AB′P′,连结PP′,根据△APB≌△AB′P′,AP=AP′,PB=PB′,AB=AB′,根据∠PAP′=∠BAB′=60°,△APP′和△ABB′均为等边三角形,得出PP′=AP,根据,根据两点之间线段最短得出点C,点P,点P′,点B′四点共线时,最小=CB′,点P在CB′上即可;
    (3)将△APB逆时针旋转60°,得到△AP′B′,连结BB′,PP′,得出△APB≌△AP′B′,可证△APP′和△ABB′均为等边三角形,得出PP′=AP,BB′=AB,∠ABB′=60°,根据,可得点C,点P,点P′,点B′四点共线时,最小=CB′,利用30°直角三角形性质得出AB=2AC=2,根据勾股定理BC=,可求BB′=AB=2,根据∠CBB′=∠ABC+∠ABB′=30°+60°=90°,在Rt△CBB′中,B′C=即可;
    (4)将△BCE逆时针旋转60°得到△CE′B′,连结EE′,BB′,过点B′作B′F⊥AB,交AB延长线于F,得出△BCE≌△CE′B′,BE=B′E′,CE=CE′,CB=CB′,可证△ECE′与△BCB′均为等边三角形,得出EE′=EC,BB′=BC,∠B′BC=60°,,得出点C,点E,点E′,点B′四点共线时,最小=AB′,根据四边形ABCD为正方形,得出AB=BC=2,∠ABC=90°,可求∠FBB′=180°-∠ABC-∠CBB′=180°-90°-60°=30°,根据30°直角三角形性质得出BF=,勾股定理BF=,可求AF=AB+BF=2+,再根据勾股定理AB′=即可.
    (1)
    解:连结PP′,
    ∵≌,
    ∴∠BAP=∠CAP′,∠APB=∠AP′C,AP=AP′=3,BP=CP′=4,
    ∵△ABC为等边三角形,
    ∴∠BAC=60°
    ∴∠PAP′=∠PAC+∠CAP′=∠PAC+∠BAP=60°,
    ∴△APP′为等边三角形,
    ,∴PP′=AP=3,∠AP′P=60°,
    在△P′PC中,PC=5,

    ∴△PP′C是直角三角形,∠PP′C=90°,
    ∴∠AP′C=∠APP+∠PPC=60°+90°=150°,
    ∴∠APB=∠AP′C=150°,
    故答案为150°;

    (2)
    证明:将△APB逆时针旋转60°,得到△AB′P′,连结PP′,
    ∵△APB≌△AB′P′,
    ∴AP=AP′,PB=PB′,AB=AB′,
    ∵∠PAP′=∠BAB′=60°,
    ∴△APP′和△ABB′均为等边三角形,
    ∴PP′=AP,
    ∵,
    ∴点C,点P,点P′,点B′四点共线时,最小=CB′,
    ∴点P在CB′上,
    ∴过的费马点.

    (3)
    解:将△APB逆时针旋转60°,得到△AP′B′,连结BB′,PP′,
    ∴△APB≌△AP′B′,
    ∴AP′=AP,AB′=AB,
    ∵∠PAP′=∠BAB′=60°,
    ∴△APP′和△ABB′均为等边三角形,
    ∴PP′=AP,BB′=AB,∠ABB′=60°,

    ∴点C,点P,点P′,点B′四点共线时,最小=CB′,
    ∵,,,
    ∴AB=2AC=2,根据勾股定理BC=
    ∴BB′=AB=2,
    ∵∠CBB′=∠ABC+∠ABB′=30°+60°=90°,
    ∴在Rt△CBB′中,B′C=
    ∴最小=CB′=;

    (4)
    解:将△BCE逆时针旋转60°得到△CE′B′,连结EE′,BB′,过点B′作B′F⊥AB,交AB延长线于F,
    ∴△BCE≌△CE′B′,
    ∴BE=B′E′,CE=CE′,CB=CB′,
    ∵∠ECE′=∠BCB′=60°,
    ∴△ECE′与△BCB′均为等边三角形,
    ∴EE′=EC,BB′=BC,∠B′BC=60°,
    ∵,
    ∴点C,点E,点E′,点B′四点共线时,最小=AB′,
    ∵四边形ABCD为正方形,
    ∴AB=BC=2,∠ABC=90°,
    ∴∠FBB′=180°-∠ABC-∠CBB′=180°-90°-60°=30°,
    ∵B′F⊥AF,
    ∴BF=,BF=,
    ∴AF=AB+BF=2+,
    ∴AB′=,
    ∴最小=AB′=.

    【点睛】
    本题考查图形旋转性质,等边三角形判定与性质,勾股定理,直角三角形判定与性质,两点之间线段最短,四点共线,正方形性质,30°直角三角形性质,掌握图形旋转性质,等边三角形判定与性质,勾股定理,直角三角形判定与性质,两点之间线段最短,四点共线,正方形性质,30°直角三角形性质是解题关键.
    5、证明见解析;邻边相等的平行四边形是菱形,对角线垂直的平行四边形是菱形.
    【解析】
    【分析】
    根据邻边相等的平行四边形是菱形或对角线垂直的平行四边形是菱形证明即可.
    【详解】
    解:如图,四边形AECF即为所求作.

    理由:四边形ABCD是平行四边形,
    ∴AE∥CF,
    ∴∠EAO=∠FCO,
    ∵EF垂直平分线段AC,
    ∴OA=OC,
    在△AEO和△CFO中,

    ∴△AEO≌△CFO(ASA),
    ∴AE=CF,
    ∴四边形AECF是平行四边形,
    ∵EA=EC或AC⊥EF,
    ∴四边形AECF是菱形.
    故答案为:邻边相等的平行四边形是菱形,对角线垂直的平行四边形是菱形.
    【点睛】
    本题考查作图-复杂作图,平行四边形的性质,菱形的判定等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.

    相关试卷

    冀教版八年级下册第二十章 函数综合与测试课后作业题: 这是一份冀教版八年级下册第二十章 函数综合与测试课后作业题,共20页。试卷主要包含了如图所示的图象等内容,欢迎下载使用。

    冀教版第二十二章 四边形综合与测试优秀课时作业: 这是一份冀教版第二十二章 四边形综合与测试优秀课时作业,共32页。试卷主要包含了六边形对角线的条数共有等内容,欢迎下载使用。

    初中数学冀教版八年级下册第二十二章 四边形综合与测试精品练习题: 这是一份初中数学冀教版八年级下册第二十二章 四边形综合与测试精品练习题,共26页。试卷主要包含了如图,菱形的对角线等内容,欢迎下载使用。

    • 课件
    • 教案
    • 试卷
    • 学案
    • 其他

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        使用学贝下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        返回
        顶部
        Baidu
        map