初中数学第二十二章 四边形综合与测试优秀同步达标检测题
展开八年级数学下册第二十二章四边形章节测评
考试时间:90分钟;命题人:数学教研组
考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)
一、单选题(10小题,每小题3分,共计30分)
1、如图,在正方形ABCD中,AB=3,点E,F分别在边AB,CD上,∠EFD=60°.若将四边形EBCF沿EF折叠,点B′恰好落在AD边上,则BE的长度为( )
A.1 B. C. D.2
2、六边形对角线的条数共有( )
A.9 B.18 C.27 D.54
3、一个多边形从一个顶点引出的对角线条数是4条,这个多边形的边数是( )
A.5 B.6 C.7 D.8
4、下列命题中,是真命题的是( ).A.三角形的外心是三角形三个内角角平分线的交点
B.满足的三个数,,是勾股数
C.对角线相等的四边形各边中点连线所得四边形是矩形
D.五边形的内角和为
5、如图,在▱ABCD中,对角线AC、BD相交于点O,过点O作OE⊥AC,交AD于点E,连接CE,若△CDE的周长为8,则▱ABCD的周长为( )
A.8 B.10 C.16 D.20
6、在Rt△ABC中,∠B=90°,D,E,F分别是边BC,CA,AB的中点,AB=6,BC=8,则四边形AEDF的周长是( )
A.18 B.16 C.14 D.12
7、已知:在△ABC中,AC=BC,点D、E分别是边AB、AC的中点,延长DE至点F,使得EF=DE,那么四边形AFCD一定是( )
A.菱形 B.矩形 C.直角梯形 D.等腰梯形
8、若一个多边形截去一个角后变成了六边形,则原来多边形的边数可能是( )
A.5或6 B.6或7 C.5或6或7 D.6或7或8
9、如图,DE是的中位线,若,则BC的长为( )
A.8 B.7 C.6 D.7.5
10、下列命题中是真命题的是( ).A.有一组邻边相等的平行四边形是菱形 B.对角线互相垂直且相等的四边形是菱形
C.对角线相等的四边形是矩形 D.有一个角为直角的四边形是矩形
第Ⅱ卷(非选择题 70分)
二、填空题(5小题,每小题4分,共计20分)
1、如图,在矩形ABCD中,,,E、F分别是边AB、BC上的动点,且,M为EF中点,P是边AD上的一个动点,则的最小值是______.
2、如图所示,过六边形的顶点的所有对角线可将六边形分成_______个三角形.
3、如图,在长方形中,,,、分别在边、上,且.现将四边形沿折叠,点,的对应点分别为点,,当点恰好落在边上时,则的长为______.
4、如图,在平面直角坐标系xOy中,菱形ABCD的顶点D在x轴上,边BC在y轴上,若点A的坐标为(12,13),则点C的坐标是___.
5、五边形内角和为__________.
三、解答题(5小题,每小题10分,共计50分)
1、若直线分别交轴、轴于A、C两点,点P是该直线上在第一象限内的一点,PB⊥轴,B为垂足,且S△ABC= 6
(1)求点B和P的坐标;
(2)点D是直线AP上一点,△ABD是直角三角形,求点D坐标;
(3)请问坐标平面是否存在点Q,使得以Q、C、P、B为顶点四边形是平行四边形,若存在请直接写出点Q的坐标;若不存在,请说明理由.
2、如图,在四边形ABCD中,AB=AD,AD//BC
(1)在图中,用尺规作线段BD的垂直平分线EF,分别交BD、BC于点E、F.(保留作图痕迹,不写作法)
(2)连接DF,证明四边形ABFD为菱形.
3、如图所示,在四边形ABCD中,∠A=80°,∠C=75°,∠ADE为四边形ABCD的一个外角,且∠ADE=125°,试求出∠B的度数.
4、如图所示,在每个小正方形的边长均为1的网格中,线段AB的端点A、B均在小正方形的顶点上.
(1)在图中画出等腰△ABC,且△ABC为钝角三角形,点C在小正方形顶点上;
(2)在(1)的条件下确定点C后,再画出矩形BCDE,D,E都在小正方形顶点上,且矩形BCDE的周长为16,直接写出EA的长为 .
5、已知正方形与正方形,,.
(1)如图1,若点和点重合,点在线段上,点在线段的延长线上,连接、、,将阴影部分三角形的面积记作,则 (用含有、的代数式表示).
(2)如图2,若点与点重合,点在线段上,点在线段的延长线上,连接、、,将阴影部分三角形的面积记作,则 (用含有、的代数式表示).
(3)如图3,若将正方形沿正方形的边所在直线平移,使得点、在线段上(点不与点重合、点不与点重合),连接、、,设,将阴影部分三角形的面积记作,则 (用含有、、的代数式表示).
(4)如图4,若将正方形沿正方形的边所在直线平移,使得点、在的延长线上,连接、、,设,将阴影部分三角形的面积记作,则 (用含有、、的代数式表示).
-参考答案-
一、单选题
1、D
【解析】
【分析】
由正方形的性质得出∠EFD=∠BEF=60°,由折叠的性质得出∠BEF=∠FEB'=60°,BE=B'E,设BE=x,则B'E=x,AE=3-x,由直角三角形的性质可得:2(3-x)=x,解方程求出x即可得出答案.
【详解】
解:∵四边形ABCD是正方形,
∴AB∥CD,∠A=90°,
∴∠EFD=∠BEF=60°,
∵将四边形EBCF沿EF折叠,点B'恰好落在AD边上,
∴∠BEF=∠FEB'=60°,BE=B'E,
∴∠AEB'=180°-∠BEF-∠FEB'=60°,
∴B'E=2AE,
设BE=x,则B'E=x,AE=3-x,
∴2(3-x)=x,
解得x=2.
故选:D.
【点睛】
本题考查了正方形的性质,折叠的性质,含30°角的直角三角形的性质等知识点,能综合性运用性质进行推理是解此题的关键.
2、A
【解析】
【分析】
n边形对角线的总条数为:(n≥3,且n为整数),由此可得出答案.
【详解】
解:六边形的对角线的条数= =9.
故选:A.
【点睛】
本题考查了多边形的对角线的知识,属于基础题,解答本题的关键是掌握:n边形对角线的总条数为:(n≥3,且n为整数).
3、C
【解析】
【分析】
根据从n边形的一个顶点引出对角线的条数为(n-3)条,可得答案.
【详解】
解:∵一个n多边形从某个顶点可引出的对角线条数为(n-3)条,
而题目中从一个顶点引出4条对角线,
∴n-3=4,得到n=7,
∴这个多边形的边数是7.
故选:C.
【点睛】
本题考查了多边形的对角线,从一个顶点引对角线,注意相邻的两个顶点不能引对角线.
4、D
【解析】
【分析】
正确的命题是真命题,根据定义解答.
【详解】
解:A. 三角形的外心是三角形三条边垂直平分线的交点,故该项不符合题意;
B. 满足的三个正整数,,是勾股数,故该项不符合题意;
C. 对角线相等的四边形各边中点连线所得四边形是菱形,故该项不符合题意;
D. 五边形的内角和为,故该项符合题意;
故选:D.
【点睛】
此题考查了真命题的定义,正确掌握三角形外心的定义,勾股数的定义,中点四边形的判定定理及多边形内角和的计算公式是解题的关键.
5、C
【解析】
【分析】
根据线段垂直平分线的判定和性质,可得AE=CE,又由CE+DE+CD=8,即AD+CD=8,继而可得ABCD的周长.
【详解】
解:∵四边形ABCD是平行四边形,
∴OA=OC,AB=CD,AD=BC,
∵OE⊥AC,
∴OE是线段AC的垂直平分线,
∴AE=CE,
∵△CDE的周长为8,
∴CE+DE+CD=8,即AD+CD =8,
∴平行四边形ABCD的周长为2(AD+CD)=16.
故选:C.
【点睛】
本题考查了平行四边形的性质、线段垂直平分线的判定和性质,关键是根据线段垂直平分线的性质进行分析.此题难度不大,注意掌握数形结合思想的应用.
6、B
【解析】
略
7、B
【解析】
【分析】
先证明四边形ADCF是平行四边形,再证明AC=DF即可.
【详解】
解:∵E是AC中点,
∴AE=EC,
∵DE=EF,
∴四边形ADCF是平行四边形,
∵AD=DB,AE=EC,
∴DE=BC,
∴DF=BC,
∵CA=CB,
∴AC=DF,
∴四边形ADCF是矩形;
故选:B.
【点睛】
本题考查了矩形的判定、等腰三角形的性质、平行四边形的判定、三角形中位线定理;熟记对角线相等的平行四边形是矩形是解决问题的关键.
8、C
【解析】
【分析】
实际画图,动手操作一下,可知六边形可以是五边形、六边形、七边形截去一个角后得到.
【详解】
解:如图,原来多边形的边数可能是5,6,7.
故选C
【点睛】
本题考查的是截去一个多边形的一个角,解此类问题的关键是要从多方面考虑,注意不能漏掉其中的任何一种情况.
9、A
【解析】
【分析】
已知DE是的中位线,,根据中位线定理即可求得BC的长.
【详解】
是的中位线,,
,
故选:A.
【点睛】
此题主要考查三角形中位线定理:三角形的中位线平行于第三边,并且等于第三边的一半;掌握中位线定理是解题的关键.
10、A
【解析】
【分析】
根据平行线四边形的性质得到对边相等,加上一组邻边相等,可得到四边都相等,根据菱形的定义对A、B进行判断;根据矩形的判定方法对C、D进行判断.
【详解】
解:A、平行四边形的对边相等,若有一组邻边相等,则四边都相等,所以该选项正确;
B、对角线互相平分且垂直的四边形是菱形,所以该选项不正确;
C、对角线互相平分且相等的四边形为矩形,所以该选项不正确;
D、有三个角是直角的四边形是矩形,所以该选项不正确.
故选:A.
【点睛】
本题考查了命题与定理:判断事情的语句叫命题;正确的命题叫真命题;经过证明其正确性的命题称为定理.也考查了平行四边形、矩形和菱形的判定与性质.
二、填空题
1、11
【解析】
【分析】
作点C关于AD的对称点G,连接PG、GD、BM、GB,则当点P、M在线段BG上时,GP+PM+BM最小,从而 CP+PM最小,在Rt△BCG中由勾股定理即可求得BG的长,从而求得最小值.
【详解】
如图,作点C关于AD的对称点G,连接PG、GD、BM、GB
由对称的性质得:PC=PG,GD=CD
∵GP+PM+BM≥BG
∴CP+PM=GP+PM≥BG-BM
则当点P、M在线段BG上时,CP+PM最小,且最小值为线段BG-BM
∵四边形ABCD是矩形
∴CD=AB=6,∠BCD=∠ABC=90°
∴CG=2CD=12
∵M为线段EF的中点,且EF=4
∴
在Rt△BCG中,由勾股定理得:
∴GM=BG-BM=13-2=11
即CP+PM的最小值为11.
【点睛】
本题是求两条线段和的最小值问题,考查了矩形性质,折叠的性质,直角三角形斜边上中线的性质,两点间线段最短,勾股定理等知识,有一定的综合性,关键是作点C关于AD的对称点及连接BM,GP+PM+BM的最小值转化为线段CP+PM的最小值.
2、4
【解析】
【分析】
从边形的一个顶点出发,连接这个点与其余各顶点,可以把一个多边形分割成个三角形,依此作答.
【详解】
解:过六边形的顶点的所有对角线可将六边形分成个三角形.
故答案为4.
【点睛】
本题主要考查多边形的对角线,从边形的一个顶点出发,分别连接这个点与其余各顶点,形成的三角形个数为.
3、4
【解析】
【分析】
由勾股定理求出F,得到D,过点作H⊥AB于H,连接BF,则四边形是矩形,求出HE,过点F作FG⊥AB于G,则四边形BCFG是矩形,利用勾股定理求出的长.
【详解】
解:在长方形中,,,
由折叠得5,
∴,
∴13=2,
过点作H⊥AB于H,连接BF,则四边形是矩形,
∴AH=D=2,
∵∠EF=∠BEF,∠FE=∠BEF,
∴∠EF=∠FE,
∴E=F=13,
∴=5,
过点F作FG⊥AB于G,则四边形BCFG是矩形,
∴BG=FC=5,
∴EG=13-5=8,
∴=4
故答案为4.
【点睛】
此题考查了矩形的性质,折叠的性质,勾股定理,正确引出辅助线利用推理论证进行求解是解题的关键.
4、(0,-5)
【解析】
【分析】
在Rt△ODC中,利用勾股定理求出OC即可解决问题.
【详解】
解:∵A(12,13),
∴OD=12,AD=13,
∵四边形ABCD是菱形,
∴CD=AD=13,
在Rt△ODC中,,
∴C(0,-5).
故答案为:(0,-5)
【点睛】
本题考查菱形的性质、勾股定理等知识,解题的关键是灵活运用所学知识解决问题.
5、540°
【解析】
【分析】
根据n边形的内角和公式(n-2)·180°求解即可.
【详解】
解:五边形内角和为(5-2)×180°=540°,
故答案为:540°.
【点睛】
本题考查多边形的内角和,熟记多边形的内角和公式是解答的关键.
三、解答题
1、 (1)B(2,0),P(2,3)
(2)(2,3)或(,)
(3)(0,5)或(0,-1)或(4,1)
【解析】
【分析】
(1)设B(x,0),则P(x,x+2),由S△ABC=6列方程求出x的值,即得到点B和点P的坐标;
(2)当点D与点P重合时,△ABD是直角三角形;当点D与点P不重合时,过点C作CE⊥AP,先求出直线CE的解析式,再由直线BD∥CE求出直线BD的解析式且与y=x+2联立方程组,求出点D的坐标;
(3)画出图形,根据平行四边形的性质分三种情况得出点Q坐标.
(1)
解:如图1,设B(x,0),则P(x,x+2),
对于y=x+2,当y=0时,由x+2=0,得,x=-4;当x=0时,y=2,
∴A(-4,0),C(0,2),
∵点P在第一象限,且S△ABC=6,
∴×2(x+4)=6,
解得x=2,
∴B(2,0),P(2,3).
(2)
如图1,点D与点P重合,此时∠ABD=∠ABP=90°,
∴△ABD是直角三角形,
此时D(2,3);
如图2,点D在线段AP上,∠ADB=90°,
此时△ABD是直角三角形,作CE⊥AP,交x轴于点E,
则∠ACE=∠ADB=90°,
∴BD∥CE,AC=,
设E(m,0),
由AE•OC=AC•CE=S△ACE,得AE•OC=AC•CE,
∴2(m+4)=CE,
∴CE=(m+4),
∵∠COE=90°,
∴OE2+OC2=CE2,
∴m2+22=(m+4)]2,
整理得,m2-2m+1=0,
解得,m1=m2=1,
∴E(1,0);
设直线CE的解析式为y=kx+2,则k+2=0,
解得,k=-2,
∴y=-2x+2;
设直线BD的解析式为y=-2x+n,则-2×2+n=0,
解得,n=4,
∴y=-2x+4,
由,得:,
∴D(,);
由图象可知,当点D在PA的延长线上,或点D在AP的延长线上,则△ABD不能是直角三角形,
综上所述,点D的坐标是(2,3)或(,);
(3)
存在.如图,
当四边形CQBP是平行四边形时,
此时,CQ=PB=3,
∴Q(0,-1);
当四边形CQ1PB是平行四边形时,
此时,CQ1=PB=3,
∴Q1(0,5);
当四边形CPQ2B是平行四边形时,
此时,CP∥BQ2且CB∥PQ2,
∴Q2(4,1);
综上所述,点Q的坐标为(0,5)或(0,-1)或(4,1).
【点睛】
此题重点考查一次函数的图象与性质、平行四边形的判定与性质、勾股定理等知识点,在解第(2)题、第(3)题时,应进行分类讨论,求出所有符合条件的结果,此题综合性较强,难度较大,属于考试压轴题.
2、 (1)见解析
(2)见解析
【解析】
【分析】
(1)直接利用线段垂直平分线的作法得出答案;
(2)结合垂直平分线的性质得出△ADE≌△FBE,即可得出AE=EF,进而利用菱形的判定方法得出答案.
(1)
(1)如图:EF即为所求作
(2)
证明:如图,连接DF,
∵AD//BC,
∴∠ADE=∠EBF,
∵AF垂直平分BD,
∴BE=DE.
在△ADE和△FBE中,
,
∴△ADE≌△FBE(ASA),
∴AE=EF,
∴BD与AF互相垂直且平分,
∴四边形ABFD为菱形.
【点睛】
此题主要考查了菱形的判定以及线段垂直平分线的性质与作法,正确应用线段垂直平分线的性质是解题关键.
3、150°
【解析】
【分析】
先根据邻补角的定义求出∠ADC的度数,再根据四边形的内角和求出∠B的度数.
【详解】
解:∵∠ADE为四边形ABCD的一个外角,且∠ADE=125°,
∴∠ADC=180°-∠ADE=55°,
∵∠A+∠B+∠C+∠ADE=360°,
∴∠B=360°-∠A-∠C-∠ADE=360°-80°-75°-55°=150°.
【点睛】
此题考查了多边形外角定义,多边形的内角和,熟记多边形的内角和进行计算是解题的关键.
4、 (1)见解析
(2)画图见解析,
【解析】
【分析】
(1)作出腰为5且∠ABC是钝角的等腰三角形ABC即可;
(2)作出边长分别为5,3的矩形ABDE即可.
(1)
解:如图,AB==BC,∠ABC>90°,所以△ABC即为所求;
(2)
解:如图,矩形BCDE即为所求.AE= .
故答案为:.
【点睛】
本题考查作图-应用与设计作图,等腰三角形的判定,矩形的判定,勾股定理等知识,解题的关键是学会利用数形结合的思想解决问题,属于中考常考题型.
5、 (1)
(2)
(3)
(4)
初中冀教版第二十二章 四边形综合与测试精练: 这是一份初中冀教版第二十二章 四边形综合与测试精练,共29页。
冀教版第二十二章 四边形综合与测试精品精练: 这是一份冀教版第二十二章 四边形综合与测试精品精练,共26页。试卷主要包含了下列命题错误的是,在中,若,则的度数是等内容,欢迎下载使用。
初中数学冀教版八年级下册第二十二章 四边形综合与测试精品课堂检测: 这是一份初中数学冀教版八年级下册第二十二章 四边形综合与测试精品课堂检测,共28页。试卷主要包含了下列说法错误的是,如图,E等内容,欢迎下载使用。