开学活动
搜索
    上传资料 赚现金

    2022年冀教版八年级数学下册第二十二章四边形同步测评试题(含答案解析)

    2022年冀教版八年级数学下册第二十二章四边形同步测评试题(含答案解析)第1页
    2022年冀教版八年级数学下册第二十二章四边形同步测评试题(含答案解析)第2页
    2022年冀教版八年级数学下册第二十二章四边形同步测评试题(含答案解析)第3页
    还剩20页未读, 继续阅读
    下载需要20学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    初中数学第二十二章 四边形综合与测试精品同步达标检测题

    展开

    这是一份初中数学第二十二章 四边形综合与测试精品同步达标检测题,共23页。试卷主要包含了下列说法不正确的是,已知锐角∠AOB,如图.等内容,欢迎下载使用。
    八年级数学下册第二十二章四边形同步测评 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。I卷(选择题  30分)一、单选题(10小题,每小题3分,共计30分)1、下列命题错误的是(       A.两组对边分别平行的四边形是平行四边形B.两组对边分别相等的四边形是平行四边形C.一组对边平行,另一组对边相等的四边形是平行四边形D.对角线互相平分的四边形是平行四边形2、下列命题中是真命题的是(       ).A.有一组邻边相等的平行四边形是菱形 B.对角线互相垂直且相等的四边形是菱形C.对角线相等的四边形是矩形 D.有一个角为直角的四边形是矩形3、正方形具有而矩形不一定具有的性质是(       A.四个角相等 B.对角线互相垂直C.对角互补 D.对角线相等4、下列说法不正确的是(       A.三角形的外角大于每一个与之不相邻的内角B.四边形的内角和与外角和相等C.等边三角形是轴对称图形,对称轴只有一条D.全等三角形的周长相等,面积也相等5、如图,平行四边形ABCD的对角线ACBD相交于点O,下列结论错误的是(  )A.AOCO B.ADBC C.ADBC D.∠DAC=∠ACD6、已知锐角∠AOB,如图.(1)在射线OA上取一点C,以点O为圆心,OC长为半径画弧,交射线OB于点D,连接CD(2)分别以点CD为圆心,CD长为半径作弧,两弧交于点P,连接CPDP(3)作射线OPCD于点Q根据以上作图过程及所作图形,下列结论中错误的是(   )A.四边形OCPD是菱形 B.CP=2QCC.∠AOP=∠BOP D.CDOP7、如图,五边形中,CPDP分别平分,则(   )A.60° B.72° C.70° D.78°8、在RtABC中,∠B=90°,DEF分别是边BCCAAB的中点,AB=6,BC=8,则四边形AEDF的周长是(       A.18 B.16 C.14 D.129、能够判断一个四边形是矩形的条件是(       A.对角线相等 B.对角线垂直C.对角线互相平分且相等 D.对角线垂直且相等10、下面性质中,平行四边形不一定具备的是(  )A.对角互补 B.邻角互补C.对角相等 D.对角线互相平分第Ⅱ卷(非选择题  70分)二、填空题(5小题,每小题4分,共计20分)1、如图,翠屏公园有一块长为12m,宽为6m的长方形草坪,绿化部门计划在草坪中间修两条宽度均为2m的石子路(两条石子路的任何地方的水平宽度都是2m),剩余阴影区域计划种植鲜花,则种植鲜花的面积为______m22、如图,AC为正方形ABCD的对角线,EAC上一点,连接EBED,当时,的度数为______.3、如图,将边长为2的正方形OABC放在平面直角坐标系中,O是原点,点A的横坐标为1,则点C的坐标为______.4、矩形的性质定理1:矩形的四个角都是________.符号语言:∵四边形ABCD是矩形,∴∠A=∠B=∠C=∠D=90°.矩形的性质定理2:矩形的对角线________.符号语言:∵四边形ABCD是矩形,ACBD5、平行四边形的性质:平行四边形的两组对边分别________;平行四边形的两组对角分别________;平行四边形的对角线________.三、解答题(5小题,每小题10分,共计50分)1、如图,已知矩形ABCDABAD).EBC上的点,AE=AD(1)在线段CD上作一点F,连接EF,使得∠EFC=∠BEA(请用直尺和圆规作图,保留作图痕迹);(2)在(1)作出的图形中,若AB=4,AD=5,求DF的值.2、如图,在Rt△ABC中,∠ABC=90°,∠C=30°,AC=12cm,点E从点A出发沿AB以每秒1cm的速度向点B运动,同时点D从点C出发沿CA以每秒2cm的速度向点A运动,运动时间为t秒(0<t<6),过点DDFBC于点F(1)试用含t的式子表示AEADDF的长;(2)如图①,连接EF,求证四边形AEFD是平行四边形;(3)如图②,连接DE,当t为何值时,四边形EBFD是矩形?并说明理由.3、如图,将△ABC放在每个小正方形的边长为1的网格中,点A,点B,点C均落在格点上.(1)计算AC2+BC2的值等于_____;(2)请在如图所示的网格中,用无刻度的直尺,画出一个以AB为一边的矩形,使该矩形的面积等于AC2+BC2,并简要说明画图方法(不要求证明)_____.4、如图,把矩形ABCD绕点A按逆时针方向旋转得到矩形AEFG,使点E落在对角线BD上,连接DGDF(1)若∠BAE=50°,求∠DGF的度数;(2)求证:DFDC5、【问题情境】如图1,在中,,垂足为D,我们可以得到如下正确结论:①;②;③,这些结论是由古希酷著名数学家欧几里得在《几何原本》最先提出的,我们称之为“射影定理”,又称“欧几里德定理”.(1)请证明“射影定理”中的结论③(2)【结论运用】如图2,正方形的边长为6,点O是对角线的交点,点E上,过点C,垂足为F,连接①求证:②若,求的长. -参考答案-一、单选题1、C【解析】【分析】根据平行四边形的判定逐项分析即可得.【详解】解:A、两组对边分别平行的四边形是平行四边形,正确,则此项不符合题意;B、两组对边分别相等的四边形是平行四边形,正确,则此项不符合题意;C、一组对边平行,另一组对边相等的四边形可能是平行四边形,也可能是等腰梯形,故原命题错误,此项符合题意;D、对角线互相平分的四边形是平行四边形,正确,则此项不符合题意,故选:C.【点睛】本题考查了平行四边形的判定,熟记平行四边形的判定是解题关键.2、A【解析】【分析】根据平行线四边形的性质得到对边相等,加上一组邻边相等,可得到四边都相等,根据菱形的定义对A、B进行判断;根据矩形的判定方法对C、D进行判断.【详解】解:A、平行四边形的对边相等,若有一组邻边相等,则四边都相等,所以该选项正确;B、对角线互相平分且垂直的四边形是菱形,所以该选项不正确;C、对角线互相平分且相等的四边形为矩形,所以该选项不正确;D、有三个角是直角的四边形是矩形,所以该选项不正确.故选:A.【点睛】本题考查了命题与定理:判断事情的语句叫命题;正确的命题叫真命题;经过证明其正确性的命题称为定理.也考查了平行四边形、矩形和菱形的判定与性质.3、B【解析】4、C【解析】【分析】根据三角形外角的性质,四边形内角和定理和外角和定理,等边三角形的对称性,全等三角形的性质判断即可.【详解】∵三角形的外角大于每一个与之不相邻的内角,正确,A不符合题意;∵四边形的内角和与外角和都是360°,∴四边形的内角和与外角和相等,正确,B不符合题意;∵等边三角形是轴对称图形,对称轴有三条,∴等边三角形是轴对称图形,对称轴只有一条,错误,C符合题意;∵全等三角形的周长相等,面积也相等,正确,D不符合题意;故选C【点睛】本题考查了三角形外角的性质,四边形的内角和,外角和定理,等边三角形的对称性,全等三角形的性质,准确相关知识是解题的关键.5、D【解析】【分析】根据平行四边形的性质解答.【详解】解:∵四边形ABCD是平行四边形,AOOC,故A正确;,故B正确; ADBC,故C正确;故选:D【点睛】此题考查了平行四边形的性质,熟记平行四边形的性质是解题的关键.6、A【解析】【分析】根据作图信息可以判断出OP平分,由此可以逐一判断即可.【详解】解:由作图可知,平分OP垂直平分线段CD∴∠AOP=∠BOPCDOP故选项CD正确;由作图可知, 是等边三角形, OP垂直平分线段CD CP=2QC故选项B正确,不符合题意;由作图可知,,不能确定四边形OCPD是菱形,故选项A符合题意,故选:A【点睛】本题考查了基本作图,解题的关键是熟练掌握作图的依据.7、C【解析】【分析】根据五边形的内角和等于,由,可求的度数,再根据角平分线的定义可得的角度和,进一步求得的度数.【详解】解:五边形的内角和等于的平分线在五边形内相交于点故选:C.【点睛】本题主要考查了多边形的内角和公式,角平分线的定义,解题的关键是熟记公式,注意整体思想的运用.8、B【解析】9、C【解析】10、A【解析】【分析】直接利用平行四边形的性质:对角相等、对角线互相平分、对边平行且相等,进而分析得出即可.【详解】解:A、平行四边形对角不一定互补,故符合题意;B、平行四边形邻角互补正确,故不符合题意;C、平行四边形对角相等正确,故不符合题意.D、平行四边形的对角线互相平分正确,故不符合题意;故选A.【点睛】此题主要考查了平行四边形的性质,熟练掌握相关性质是解题关键.二、填空题1、48【解析】【分析】利用长方形的面积减去石子路的面积,即可求解.【详解】解:根据题意得:种植鲜花的面积为故答案为:48【点睛】本题主要考查了求平行四边形的面积,熟练掌握平行四边形的性质是解题的关键.2、18°##18度【解析】【分析】由“SAS”可证DCE≌△BCE,可得∠CED=∠CEB=BED=63°,由三角形的外角的性质可求解.【详解】证明:∵四边形ABCD是正方形,AD=CD=BC=AB,∠DAE=∠BAE=∠DCA=∠BCA=45°,DCEBCE中,∴△DCE≌△BCESAS),∴∠CED=∠CEB=BED=63°,∵∠CED=∠CAD+∠ADE∴∠ADE=63°-45°=18°,故答案为:18°.【点睛】本题考查了正方形的性质,全等三角形的判定和性质,证明DCE≌△BCE是本题的关键.3、(-,1)【解析】【分析】首先过点CCDx轴于点D,过点AAEx轴于点E,易证得AOE≌△OCD(AAS),则可得CD=OE=1,OD=AE=,继而求得答案.【详解】解:过点CCDx轴于点D,过点AAEx轴于点E则∠ODC=∠AEO=90°,∴∠OCD+∠COD=90°,∵四边形OABC是正方形,OC=OA,∠AOC=90°,∴∠COD+∠AOE=90°,∴∠OCD=∠AOEAOEOCD中,∴△AOE≌△OCDAAS),CD=OE=1,OD=AE=∴点C的坐标为:(-,1).故答案为:(-,1).【点睛】本题考查了正方形的性质、全等三角形的判定与性质以及勾股定理.注意准确作出辅助线、证得AOE≌△OCD是解此题的关键.4、     直角     相等【解析】5、     相等     相等     互相平分【解析】三、解答题1、 (1)见解析(2)【解析】【分析】(1)作∠DAE的角平分线,与DC的交点即为所求,理由:可先证明△AEF≌△ADF,可得∠AEF=∠D=90°,从而得到∠DAE+∠DFE=180°,进而得到∠EFC=∠DAE,再由ADBC,即可求解;(2)根据矩形的性质可得∠B=∠C=∠D=90°,ADBC=5,ABCD=4,从而得到BE=3,进而得到EC=2,然后在 中,由勾股定理,即可求解.(1)解:如图,作∠DAE的角平分线,与DC的交点即为所求.AE=AD,∠EAF=∠DAFAF=AF∴△AEF≌△ADF∴∠AEF=∠D=90°,∴∠DAE+∠DFE=180°,∵∠EFC+∠DFE=180°,∴∠EFC=∠DAE∵在矩形ABCD中,ADBC∴∠BEA=∠DAE∴∠EFC=∠BEA(2)解:∵四边形ABCD是矩形,∴∠B=∠C=∠D=90°,ADBC=5,ABCD=4,AEAD=5,BE=3,ECBCBE=5﹣3=2,由(1)得:△AEF≌△ADF 中,【点睛】本题主要考查了矩形的性质,全等三角形的判定和性质,勾股定理等知识,熟练掌握矩形的性质,全等三角形的判定和性质,勾股定理是解题的关键.2、 (1)AEtAD=12﹣2tDFt(2)见解析(3)3,理由见解析【解析】【分析】(1)根据题意用含t的式子表示AECD,结合图形表示出AD,根据直角三角形的性质表示出DF(2)根据对边平行且相等的四边形是平行四边形证明;(3)根据矩形的定义列出方程,解方程即可.(1)解:由题意得,AEtCD=2tADACCD=12﹣2tDFBC,∠C=30°,DFCDt(2)解:∵∠ABC=90°,DFBCAEtDFtAEDF∴四边形AEFD是平行四边形;(3)解:当t=3时,四边形EBFD是矩形,理由如下:∵∠ABC=90°,∠C=30°,ABAC=6cm,BEDF时,四边形EBFD是平行四边形,即6﹣tt解得,t=3,∵∠ABC=90°,∴四边形EBFD是矩形,t=3时,四边形EBFD是矩形.【点睛】此题考查了30度角的性质,平行四边形的判定及性质,矩形的定义,一元一次方程,三角形与动点问题,熟练掌握四边形的知识并综合应用是解题的关键.3、     11     见解析【解析】【分析】(1)直接利用勾股定理求出即可;(2)首先分别以ACBCAB为一边作正方形ACED,正方形BCNM,正方形ABHF;进而得出答案.【详解】解:(1)AC2+BC2=(2+32=11;故答案为:11;(2)分别以ACBCAB为一边作正方形ACED,正方形BCNM,正方形ABHF延长DEMN于点Q,连接QC,平移QCAGBP位置,直线GP分别交AFBH于点TS,则四边形ABST即为所求,如图,【点睛】本题考查了勾股定理,无刻度直尺作图,平行四边形与矩形的性质,掌握勾股定理以及特殊四边形的性质是解题的关键.4、 (1)∠DGF=25°;(2)见解析【解析】【分析】(1)由旋转的性质得出AB=AEAD=AG,∠BAD=∠EAG=∠AGF=90°,由等腰三角形的性质及三角形内角和定理可得出答案;(2)证出四边形ABDF是平行四边形,由平行四边形的性质可得出结论.(1)解:由旋转得AB=AEAD=AG,∠BAD=∠EAG=∠AGF=90°,∴∠BAE=∠DAG=50°,∴∠AGD=∠ADG==65°,∴∠DGF=90°-65°=25°;(2)证明:连接AF由旋转得矩形AEFG≌矩形△ABCDAF=BD,∠FAE=∠ABE=∠AEBAFBD∴四边形ABDF是平行四边形,DF=AB=DC【点睛】本题考查了矩形的性质,全等三角形的判定和性质,旋转的性质,平行四边形的判定与性质,等腰三角形的性质,熟记矩形的性质并准确识图是解题的关键.5、 (1)见解析;(2)①见解析;②【解析】【分析】(1)由AA证明,再由相似三角形对应边称比例得到,继而解题;(2)①由“射影定理”分别解得,整理出,再结合即可证明②由勾股定理解得,再根据得到,代入数值解题即可.(1)证明:(2)四边形ABCD是正方形中,【点睛】本题考查相似三角形的综合题,涉及勾股定理、正方形等知识,是重要考点,掌握相关知识是解题关键. 

    相关试卷

    初中数学冀教版八年级下册第二十二章 四边形综合与测试优秀达标测试:

    这是一份初中数学冀教版八年级下册第二十二章 四边形综合与测试优秀达标测试,共25页。试卷主要包含了下列命题是真命题的有个.等内容,欢迎下载使用。

    初中数学第二十二章 四边形综合与测试精品课时练习:

    这是一份初中数学第二十二章 四边形综合与测试精品课时练习,共28页。试卷主要包含了下列关于的叙述,正确的是,如图,在正方形ABCD中,点E等内容,欢迎下载使用。

    初中数学冀教版八年级下册第二十二章 四边形综合与测试精品课时作业:

    这是一份初中数学冀教版八年级下册第二十二章 四边形综合与测试精品课时作业,共25页。试卷主要包含了下列命题是真命题的有个.等内容,欢迎下载使用。

    英语朗读宝
    • 课件
    • 教案
    • 试卷
    • 学案
    • 其他
    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map