开学活动
搜索
    上传资料 赚现金

    2022年冀教版八年级数学下册第二十二章四边形综合测评试题

    2022年冀教版八年级数学下册第二十二章四边形综合测评试题第1页
    2022年冀教版八年级数学下册第二十二章四边形综合测评试题第2页
    2022年冀教版八年级数学下册第二十二章四边形综合测评试题第3页
    还剩25页未读, 继续阅读
    下载需要20学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    初中数学冀教版八年级下册第二十二章 四边形综合与测试优秀精练

    展开

    这是一份初中数学冀教版八年级下册第二十二章 四边形综合与测试优秀精练,共28页。试卷主要包含了如图,菱形的对角线,六边形对角线的条数共有等内容,欢迎下载使用。
    考生注意:
    1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
    2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
    3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
    第I卷(选择题 30分)
    一、单选题(10小题,每小题3分,共计30分)
    1、如图,四边形ABCD是菱形,对角线AC,BD交于点O,E是边AD的中点,过点E作EF⊥BD,EG⊥AC,点F,G为垂足,若AC=10,BD=24,则FG的长为( )
    A.B.8C.D.
    2、如图是用4个全等的直角三角形与1个小正方形镶嵌而成的正方形图案,已知大正方形面积为49,小正方形面积为4,若用x,y表示直角三角形的两直角边(x>y),则下列四个说法:①x2+y2=49,②x﹣y=2,③2xy+4=49,④x+y=9.
    其中说法正确的是( )
    A.②③B.①②③C.②④D.①②④
    3、如图,点A,B,C在同一直线上,且,点D,E分别是AB,BC的中点.分别以AB,DE,BC为边,在AC同侧作三个正方形,得到三个平行四边形(阴影部分)的面积分别记作,,,若,则等于( )
    A.B.C.D.
    4、下面性质中,平行四边形不一定具备的是( )
    A.对角互补B.邻角互补
    C.对角相等D.对角线互相平分
    5、已知在平行四边形ABCD中,∠A=90°,如果添加一个条件,可使该四边形是正方形,那么这个条件可以是( )
    A.∠D=90°B.AB=CDC.AD=BCD.BC=CD
    6、如图,平行四边形ABCD中,AD=5,AB=3,AE平分∠BAD交BC边于点E,则EC等于( )
    A.1B.2C.3D.4
    7、如图,菱形的对角线、相交于点,,,为过点的一条直线,则图中阴影部分的面积为( )
    A.4B.6C.8D.12
    8、如图,在平面直角坐标系中,矩形OABC的点A和点C分别落在x轴和y轴正半轴上,AO=4,直线l:y=3x+2经过点C,将直线l向下平移m个单位,设直线可将矩形OABC的面积平分,则m的值为( )
    A.7B.6C.4D.8
    9、六边形对角线的条数共有( )
    A.9B.18C.27D.54
    10、正方形具有而矩形不一定具有的性质是( )
    A.四个角相等B.对角线互相垂直
    C.对角互补D.对角线相等
    第Ⅱ卷(非选择题 70分)
    二、填空题(5小题,每小题4分,共计20分)
    1、(1)两组对边分别________的四边形是平行四边形
    ∵AB∥CD,AD∥BC,
    ∴四边形ABCD是平行四边形
    (2)两组对边分别________的四边形是平行四边形
    ∵AB=CD,AD=BC,
    ∴四边形ABCD是平行四边形
    (3)两组对角分别________的四边形是平行四边形
    ∵∠A= ∠C,
    ∠B=∠D,
    ∴四边形ABCD是平行四边形
    (4)对角线________的四边形是平行四边形
    ∵AO=CO,BO=DO,
    ∴四边形ABCD是平行四边形
    (5)一组对边________的四边形是平行四边形
    ∵AD=BC,AD∥BC,
    ∴四边形ABCD是平行四边形
    2、已知平行四边形ABCD的周长是30,若AB=10,则BC=________.
    3、如图,点M,N分别是的边AB,AC的中点,若,,则______.
    4、如图,已知矩形ABCD中,AD=3,AB=5,E是边DC上一点,将ADE绕点A顺时针旋转得到,使得点D的对应点落在AE上,如果的延长线恰好经过点B,那么DE的长度等于_____.
    5、如图,在矩形中,的角平分线交于点,连接,恰好平分,若,则的长为______.
    三、解答题(5小题,每小题10分,共计50分)
    1、如图,已知平行四边形ABCD.
    (1)用尺规完成以下基本作图:在CB上截取CE,使CE=CD,连接DE,作∠ABC的平分线BF交AD于点F.(保留作图痕迹,不写作法)
    (2)在(1)所作的图形中,证明四边形BEDF为平行四边形.
    2、已知在与中,,点在同一直线上,射线分别平分.

    (1)如图1,试说明的理由;
    (2)如图2,当交于点G时,设,求与的数量关系,并说明理由;
    (3)当时,求的度数.
    3、【问题情境】如图1,在中,,垂足为D,我们可以得到如下正确结论:①;②;③,这些结论是由古希酷著名数学家欧几里得在《几何原本》最先提出的,我们称之为“射影定理”,又称“欧几里德定理”.
    (1)请证明“射影定理”中的结论③.
    (2)【结论运用】如图2,正方形的边长为6,点O是对角线、的交点,点E在上,过点C作,垂足为F,连接.
    ①求证:.
    ②若,求的长.
    4、如图,在菱形ABDE中,,点C是边AB的中点,点P是对角线AD上的动点(可与点A,D重合),连接PC,PB.已知,若要,求AP的取值范围.丞泽同学所在的学习小组根据学习函数的经验,设AP长为xcm,PC长为,PB长为.分别对函数,随自变量x的变化而变化的规律进行了探究,下面是丞泽同学所在学习小组的探究过程,请补充完整:
    (1)按照表中自变量x的值进行取点、画图、测量,分别得到了,与x的几组对应值,表格中的______;
    (2)在同一平面直角坐标系xOy中,请在图中描出补全后的表中各组数值所对应的点,并画出函数的图象;
    (3)结合函数图象,解决问题:当时,估计AP的长度的取值范围是____________;
    请根据图象估计当______时,PC取到最小值.(请保留点后两位)
    5、如图,点D是ABC内一点,点E,F,G,H分别是AB,AC,CD,BD的中点.
    (1)求证:四边形EFGH是平行四边形;
    (2)如果∠BDC=90°,∠DBC=30°,,AD=6,求四边形EFGH的周长.
    -参考答案-
    一、单选题
    1、A
    【解析】
    【分析】
    由菱形的性质得出OA=OC=5,OB=OD=12,AC⊥BD,根据勾股定理求出AD=13,由直角三角形斜边上的中线等于斜边的一半求出OE=6.5,证出四边形EFOG是矩形,得到EO=GF即可得出答案.
    【详解】
    解:连接OE,
    ∵四边形ABCD是菱形,
    ∴OA=OC=5,OB=OD=12,AC⊥BD,
    在Rt△AOD中,AD==13,
    又∵E是边AD的中点,
    ∴OE=AD=×13=6.5,
    ∵EF⊥BD,EG⊥AC,AC⊥BD,
    ∴∠EFO=90°,∠EGO=90°,∠GOF=90°,
    ∴四边形EFOG为矩形,
    ∴FG=OE=6.5.
    故选:A.
    【点睛】
    本题考查了菱形的性质、矩形的判定与性质、直角三角形斜边上中线定理等知识;熟练掌握菱形的性质和矩形的性质是解题的关键.
    2、B
    【解析】
    【分析】
    根据正方形的性质,直角三角形的性质,直角三角形面积的计算公式及勾股定理解答即可.
    【详解】
    如图所示,
    ∵△ABC是直角三角形,
    ∴根据勾股定理:,故①正确;
    由图可知,故②正确;
    由图可知,四个直角三角形的面积与小正方形的面积之和为大正方形的面积,
    列出等式为,
    即,故③正确;
    由可得,
    又∵,
    两式相加得:,
    整理得:,
    ,故④错误;
    故正确的是①②③.
    故答案选B.
    【点睛】
    本题主要考查了勾股定理的应用,正方形性质,完全平方公式的应用,算术平方根,准确分析判断是解题的关键.
    3、B
    【解析】
    【分析】
    设BE=x,根据正方形的性质、平行四边形的面积公式分别表示出S1,S2,S3,根据题意计算即可.
    【详解】
    ∵,
    ∴AB=2BC,
    又∵点D,E分别是AB,BC的中点,
    ∴设BE=x,则EC=x,AD=BD=2x,
    ∵四边形ABGF是正方形,
    ∴∠ABF=45°,
    ∴△BDH是等腰直角三角形,
    ∴BD=DH=2x,
    ∴S1=DH•AD=,即2x•2x=,
    ∴x2=,
    ∵BD=2x,BE=x,
    ∴S2=MH•BD=(3x−2x)•2x=2x2,
    S3=EN•BE=x•x=x2,
    ∴S2+S3=2x2+x2=3x2=,
    故选:B.
    【点睛】
    本题考查的是正方形的性质、平行四边形的性质,掌握正方形的四条边相等、四个角都是90°是解题的关键.
    4、A
    【解析】
    【分析】
    直接利用平行四边形的性质:对角相等、对角线互相平分、对边平行且相等,进而分析得出即可.
    【详解】
    解:A、平行四边形对角不一定互补,故符合题意;
    B、平行四边形邻角互补正确,故不符合题意;
    C、平行四边形对角相等正确,故不符合题意.
    D、平行四边形的对角线互相平分正确,故不符合题意;
    故选A.
    【点睛】
    此题主要考查了平行四边形的性质,熟练掌握相关性质是解题关键.
    5、D
    【解析】

    6、B
    【解析】
    【分析】
    根据平行四边形及平行线的性质可得,再由角平分线及等量代换得出,利用等角对等边可得,结合图形即可得出线段长度.
    【详解】
    解:∵四边形ABCD为平行四边形,
    ∴,
    ∴,
    ∵AE平分,
    ∴,
    ∴,
    ∴,
    ∵,
    ∴,
    故选:B.
    【点睛】
    题目主要考查 平行四边形及平行线的性质,利用角平分线计算,等角对等边等,理解题意,熟练运用平行四边形的性质是解题关键.
    7、B
    【解析】
    【分析】
    根据菱形的性质可证出,可将阴影部分面积转化为的面积,根据菱形的面积公式计算即可.
    【详解】
    解:四边形为菱形,
    ,,,

    ,
    ∴,
    ∴,

    故选:.
    【点睛】
    此题考查了菱形的性质,菱形的面积公式,全等三角形的判定,将阴影部分的面积转化为的面积为解题关键.
    8、A
    【解析】
    【分析】
    如图所示,连接AC,OB交于点D,先求出C和A的坐标,然后根据矩形的性质得到D是AC的中点,从而求出D点坐标为(2,1),再由当直线经过点D时,可将矩形OABC的面积平分,进行求解即可.
    【详解】
    解:如图所示,连接AC,OB交于点D,
    ∵C是直线与y轴的交点,
    ∴点C的坐标为(0,2),
    ∵OA=4,
    ∴A点坐标为(4,0),
    ∵四边形OABC是矩形,
    ∴D是AC的中点,
    ∴D点坐标为(2,1),
    当直线经过点D时,可将矩形OABC的面积平分,
    由题意得平移后的直线解析式为,
    ∴,
    ∴,
    故选A.
    【点睛】
    本题主要考查了一次函数与几何综合,一次函数的平移,矩形的性质,解题的关键在于能够熟知过矩形中心的直线平分矩形面积.
    9、A
    【解析】
    【分析】
    n边形对角线的总条数为:(n≥3,且n为整数),由此可得出答案.
    【详解】
    解:六边形的对角线的条数= =9.
    故选:A.
    【点睛】
    本题考查了多边形的对角线的知识,属于基础题,解答本题的关键是掌握:n边形对角线的总条数为:(n≥3,且n为整数).
    10、B
    【解析】

    二、填空题
    1、 平行 相等 相等 互相平分 平行且相等
    【解析】

    2、5
    【解析】

    3、45°##45度
    【解析】
    【分析】
    根据三角形中位线定理得出,进而利用平行线的性质解答即可.
    【详解】
    解:、分别是的边、的中点,


    ,,


    故答案是:.
    【点睛】
    本题考查三角形中位线定理,解题的关键是根据三角形中位线定理得出.
    4、
    【解析】
    【分析】
    如图,连接BE、BE′,根据矩形的性质和旋转变换的性质可得:AD′=AD=3,∠AD′E=∠D=90°,利用勾股定理可得BD′=4,再运用等面积法可得:AB•AD=AE•BD′,求出AE=,再运用勾股定理即可求得答案.
    【详解】
    解:如图,连接BE、BE′,
    ∵矩形ABCD中,AD=3,AB=5,
    ∴∠D=90°,
    由旋转知,△AD′E′≌△ADE,
    ∴AD′=AD=3,∠AD′E=∠D=90°,
    ∵D′E′的延长线恰好经过点B,
    ∴∠AD′B=90°,
    在Rt△ABD′中,BD′===4,
    ∵S△ABE=AB•AD=AE•BD′,
    ∴AE===,
    在Rt△ADE中,DE===,
    故答案为:.
    【点睛】
    本题考查矩形的性质、旋转性质、勾股定理、三角形的面积,熟练掌握矩形性质和旋转性质,会利用等面积法求解是解答的关键.
    5、
    【解析】
    【分析】
    根据矩形的性质得,,,根据BE是的角平分线,得,则,,在中,根据勾股定理得,根据平行线的性质得,由因为EC平分则,等量代换得,所以,,即可得.
    【详解】
    解:∵四边形ABCD为矩形,
    ∴,,,
    ∵,BE是的角平分线,
    ∴,
    ∴,
    在中,根据勾股定理得,

    ∵,
    ∴,
    ∵EC平分,
    ∴,
    ∴,
    ∴,
    ∴,
    ∴,
    故答案为:.
    【点睛】
    本题考查了矩形的性质,勾股定理,角平分线的性质,平行线的性质,解题的关键是掌握这些知识点.
    三、解答题
    1、 (1)见解析
    (2)见解析
    【解析】
    【分析】
    (1)延长CB到E使CE=CD,然后作∠ABC的平分线交AD的延长线于F;
    (2)先根据平行四边形的性质得到AD=BC,AB=CD,ADBC,则CE=AB,再证明∠ABF=∠F得到AB=AF,然后证明BE=DF,从而可判断四边形BEDF为平行四边形.
    (1)
    如图,DE、BF为所作;
    (2)
    证明:∵四边形ABCD为平行四边形,
    ∴AD=BC,AB=CD,AD∥BC,
    ∵CE=CD,
    ∴CE=AB,
    ∵BF平分∠ABC,
    ∴∠ABF=∠CBF,
    ∵AFBC,
    ∴∠CBF=∠F,
    ∴∠ABF=∠F,
    ∴AB=AF,
    ∴CE=AF,即CB+BE=AD+DF,
    ∴BE=DF,
    ∵BEDF,
    ∴四边形BEDF为平行四边形.
    【点睛】
    本题考查了作线段,作角平分线,平行四边形的性质与判定,掌握以上知识是解题的关键.
    2、 (1)理由见解析
    (2),理由见解析
    (3)
    【解析】
    【分析】
    (1),,可知,进而可说明;
    (2)如图1所示,连接并延长至点K,分别平分,则设,为的外角,,同理,
    ,得;又由(1)中证明可知,,进而可得到结果;
    (3)如图2所示,过点C作,则,,可得,由(1)中证明可得,在中, ,即,进而可得到结果.
    (1)
    证明:

    在和中

    (2)
    解:.
    理由如下:如图1所示,连接并延长至点K
    分别平分
    则设
    为的外角
    同理可得


    又由(1)中证明可知
    由三角形内角和公式可得


    (3)
    解:当时,如图2所示,过点C作,则
    ,即
    由(1)中证明可得
    在中,根据三角形内角和定理有


    即,解得:
    故.
    【点睛】
    本题考查了全等三角形的判定与性质、三角形的外角性质、三角形内角和定理、平行线的性质、角平分线的性质等知识,连接并延长,利用三角形外角性质证得是解题的关键.
    3、 (1)见解析;
    (2)①见解析;②.
    【解析】
    【分析】
    (1)由AA证明,再由相似三角形对应边称比例得到,继而解题;
    (2)①由“射影定理”分别解得,,整理出,再结合即可证明;
    ②由勾股定理解得,再根据得到,代入数值解题即可.
    (1)
    证明:
    (2)
    ①四边形ABCD是正方形
    ②在中,
    在,

    【点睛】
    本题考查相似三角形的综合题,涉及勾股定理、正方形等知识,是重要考点,掌握相关知识是解题关键.
    4、 (1)
    (2)见解析
    (3)0≤AP≤3,1.50
    【解析】
    【分析】
    (1)证明△PAB为直角三角形,再根据勾股定理得出,而点C是线段AB的中点,即可求解;
    (2)描点绘出函数图象即可;
    (3)观察分析函数图象即可求解.
    (1)
    解:在菱形ABDE中,AB=BD
    ∵,
    ∴,
    ∵AD=6
    当x=AP=3时,则P为AD的中点
    ∴,
    ∴AB=2BP,,
    ∴,
    ∵点C是边AB的中点,
    ∴,即
    (2)
    描点绘出函数图象如下(0≤x≤6)
    (3)
    当PC的长度不大于PB长度时,即y1≤y2,从图象看,此时,0≤x≤3,即0≤AP≤3,
    从图象看,当x大约为1.50时,y1即PC取到最小值;
    故答案为:0≤AP≤3;1.50.
    【点睛】
    本题考查函数的图象,直角三角形的判定和性质等知识,解题的关键是理解题意,学会利用图象法解决问题,属于中考常考题型.
    5、 (1)见解析
    (2)12
    【解析】
    【分析】
    (1)利用三角形的中位线定理得出EH=FG=AD,EF=GH=BC,即可得出结论;
    (2)根据含30度角的直角三角形的性质,求得,由(1)得出四边形EFGH的周长=EH+GH+FG+EF=AD+BC,即可得出结果.
    (1)
    证明:∵点E,F,G,H分别是AB,AC,CD,BD的中点.
    ∴EH=FG=AD,BC,
    ∴四边形EFGH是平行四边形;
    (2)
    ∵∠BDC=90°,∠DBC=30°,
    ∴BC=2CD=4.
    由(1)得:四边形EFGH的周长=EH+GH+FG+EF=AD+BC,
    又∵AD=6,
    ∴四边形EFGH的周长=AD+BC=6+8=12.
    【点睛】
    本题考查了平行四边形的判定与性质,三角形的中位线定理,含30度角的直角三角形的性质,熟记三角形的中位线平行于第三边并且等于第三边的一半是解题的关键.
    x/cm
    0
    1
    2
    3
    4
    5
    6
    1.73
    1.00
    1.00
    a
    2.64
    3.61
    4.58
    3.46
    2.64
    2.00
    1.73
    2.00
    2.64
    3.46

    相关试卷

    数学八年级下册第二十二章 四边形综合与测试优秀同步达标检测题:

    这是一份数学八年级下册第二十二章 四边形综合与测试优秀同步达标检测题,共30页。

    冀教版八年级下册第二十二章 四边形综合与测试精品巩固练习:

    这是一份冀教版八年级下册第二十二章 四边形综合与测试精品巩固练习,共37页。试卷主要包含了已知锐角∠AOB,如图.,下列关于的叙述,正确的是等内容,欢迎下载使用。

    数学八年级下册第二十二章 四边形综合与测试精品练习题:

    这是一份数学八年级下册第二十二章 四边形综合与测试精品练习题,共32页。试卷主要包含了已知等内容,欢迎下载使用。

    英语朗读宝
    • 课件
    • 教案
    • 试卷
    • 学案
    • 其他
    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map