![2022年必考点解析冀教版八年级数学下册第二十二章四边形综合训练试题(无超纲)第1页](http://img-preview.51jiaoxi.com/2/3/12735383/0/0.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![2022年必考点解析冀教版八年级数学下册第二十二章四边形综合训练试题(无超纲)第2页](http://img-preview.51jiaoxi.com/2/3/12735383/0/1.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![2022年必考点解析冀教版八年级数学下册第二十二章四边形综合训练试题(无超纲)第3页](http://img-preview.51jiaoxi.com/2/3/12735383/0/2.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
初中冀教版第二十二章 四边形综合与测试优秀综合训练题
展开
这是一份初中冀教版第二十二章 四边形综合与测试优秀综合训练题,共32页。试卷主要包含了已知等内容,欢迎下载使用。
八年级数学下册第二十二章四边形综合训练
考试时间:90分钟;命题人:数学教研组
考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)
一、单选题(10小题,每小题3分,共计30分)
1、如图,△ABC的周长为a,以它的各边的中点为顶点作△A1B1C1,再以△AB1C1各边的中点为顶点作△A2B2C2,再以△AB2C2各边的中点为顶点作△A3B3C3,…如此下去,则△AnBnCn的周长为( )
A.a B.a C.a D.a
2、如图,在给定的正方形中,点从点出发,沿边方向向终点运动, 交于点,以,为邻边构造平行四边形,连接,则的度数的变化情况是( )
A.一直减小 B.一直减小后增大 C.一直不变 D.先增大后减小
3、在中,若,则的度数是( )
A. B. C. D.
4、如图,将矩形ABCD绕点B按顺时针方向旋转一定角度得到矩形.此时点A的对应点恰好落在对角线AC的中点处.若AB=3,则点B与点之间的距离为( )
A.3 B.6 C. D.
5、如图,矩形中,,如果将该矩形沿对角线折叠,那么图中阴影部分的面积是22.5,则( )
A.8 B.10 C.12 D.14
6、下列选项中,不能被边长为2的正方形及其内部所覆盖的图形是( )
A.长度为的线段 B.边长为2的等边三角形
C.斜边为2的直角三角形 D.面积为4的菱形
7、已知:在△ABC中,AC=BC,点D、E分别是边AB、AC的中点,延长DE至点F,使得EF=DE,那么四边形AFCD一定是( )
A.菱形 B.矩形 C.直角梯形 D.等腰梯形
8、如图,在正方形ABCD中,,点E在对角线AC上,若,则CDE的面积为( )
A.3 B.4 C.5 D.6
9、如图,平面直角坐标系xOy中,点A是直线上一动点,将点A向右平移1个单位得到点B,点C(1,0),则OB+CB的最小值为( )
A. B. C. D.
10、如图,平行四边形ABCD的对角线AC,BD相交于点O,下列结论错误的是( )
A.AO=CO B.AD∥BC C.AD=BC D.∠DAC=∠ACD
第Ⅱ卷(非选择题 70分)
二、填空题(5小题,每小题4分,共计20分)
1、如图,在平面直角坐标系xOy中,有一边长为1的正方形OABC,点B在x轴的正半轴上,如果以对角线OB为边作第二个正方形OBB1C1,再以对角线OB1为边作第三个正方形OB1B2C2,…,照此规律作下去,则B2的坐标是 ___;B2020的坐标是 ___.
2、两组对边分别________的四边形叫做平行四边形.
平行四边形不相邻的两个顶点连成的线段叫它的________.
如图所示的四边形ABCD是平行四边形.
记作:________,读作:平行四边形ABCD
线段________、________就是平行四边形ABCD的对角线.
平行四边形相对的边,称为 ________,相对的角称为________.
对边:AB与CD;BC与DA.
对角:∠ABC与∠CDA;∠BAD与∠DCB.
3、五边形内角和为__________.
4、如图,在平面直角坐标系xOy中,菱形ABCD的顶点D在x轴上,边BC在y轴上,若点A的坐标为(12,13),则点C的坐标是___.
5、如图,A、B、C均为一个正十边形的顶点,则∠ACB=_____°.
三、解答题(5小题,每小题10分,共计50分)
1、如图,▱ABCD中,E为BC边的中点,求证:DC=CF.
2、如图,在中,点D、E分别是边的中点,过点A作交的延长线于F点,连接,过点D作于点G.
(1)求证:四边形是平行四边形:
(2)若.
①当___________时,四边形是矩形;
②若四边形是菱形,则________.
3、如图1,已知∠ACD是ABC的一个外角,我们容易证明∠ACD=∠A+∠B,即:三角形的一个外角等于与它不相邻的两个内角的和.那么,三角形的一个内角与它不相邻的两个外角的和之间存在怎样的数量关系呢?
(1)尝试探究:如图2,已知:∠DBC与∠ECB分别为ABC的两个外角,则∠DBC+∠ECB-∠A 180°.(横线上填<、=或>)
(2)初步应用:如图3,在ABC中,BP、CP分别平分外角∠DBC、∠ECB,∠P与∠A有何数量关系?请利用上面的结论直接写出答案:∠P= .
(3)解决问题:如图4,在四边形ABCD中,BP、CP分别平分外角∠EBC、∠FCB,请利用上面的结论探究∠P与∠BAD、∠CDA的数量关系.
4、在平面直角坐标系中,已知点,,,以点,,为顶点的平行四边形有三个,记第四个顶点分别为,,,如图所示.
(1)若,则点,,的坐标分别是( ),( ),( );
(2)若△是以为底的等腰三角形,
①直接写出的值;
②若直线与△有公共点,求的取值范围.
(3)若直线与△有公共点,求的取值范围.
5、【问题情境】如图1,在中,,垂足为D,我们可以得到如下正确结论:①;②;③,这些结论是由古希酷著名数学家欧几里得在《几何原本》最先提出的,我们称之为“射影定理”,又称“欧几里德定理”.
(1)请证明“射影定理”中的结论③.
(2)【结论运用】如图2,正方形的边长为6,点O是对角线、的交点,点E在上,过点C作,垂足为F,连接.
①求证:.
②若,求的长.
-参考答案-
一、单选题
1、A
【解析】
【分析】
根据三角形中位线的性质可知的周长的周长,的周长的周长,以此类推找出规律,写出代数式,再整理即可选择.
【详解】
解:∵以△ABC的各边的中点为顶点作,
∴的周长的周长.
∵以各边的中点为顶点作,
∴的周长的周长,
…,
∴的周长
故选:A.
【点睛】
本题主要考查三角形中位线的性质,根据三角形中位线的性质求出前2个三角形的面积总结出规律是解答本题的关键.
2、A
【解析】
【分析】
根据题意,作交的延长线于,证明是的角平分线即可解决问题.
【详解】
解:作交的延长线于,
∵四边形 是正方形,
∴,
,
∵,
∴,,
∴,
∴,
∴,
∵四边形是平行四边形,
∴,,
∵, ,
∴,
∵,.
∴,
∴,,
∴,
∴,
∵,
∴,
∴是的角平分线,
∴点的运动轨迹是的角平分线,
∵,
由图可知,点P从点D开始运动,所以一直减小,
故选:A .
【点睛】
本题考查了正方形的性质、全等三角形的判定和性质、平行四边形的性质等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题.
3、B
【解析】
【分析】
利用平行四边形的对角相等即可选择正确的选项.
【详解】
解:四边形是平行四边形,
,
,
,
故选:B.
【点睛】
本题考查了平行四边形的性质,解题的关键是记住平行四边形的性质,属于中考基础题.
4、B
【解析】
【分析】
连接,由矩形的性质得出∠ABC=90°,AC=BD,由旋转的性质得出,证明是等边三角形,由等边三角形的性质得出,由直角三角形的性质求出AC的长,由矩形的性质可得出答案.
【详解】
解:连接,
∵四边形ABCD是矩形,
∴∠ABC=90°,AC=BD,
∵点是AC的中点, ∴,
∵将矩形ABCD绕点B按顺时针方向旋转一定角度得到矩形,
∴
∴,
∴是等边三角形,
∴∠BAA'=60°,
∴∠ACB=30°,
∵AB=3, ∴AC=2AB=6,
∴.
即点B与点之间的距离为6.
故选:B.
【点睛】
本题考查了旋转的性质,矩形的性质,直角三角形的性质,等边三角形的判定和性质,求出AC的长是解本题的关键.
5、C
【解析】
【分析】
根据折叠和矩形的性质,可得∠DBE =∠CBD,AD∥BC,AD=BC,AB⊥AD,从而得到∠BDE=∠DBE,进而得到BE=DE,再由的面积是22.5,可得,然后根据勾股定理,即可求解.
【详解】
解:根据题意得: ∠DBE =∠CBD,AD∥BC,AD=BC,AB⊥AD,
∴∠BDE=∠CBD,
∴∠BDE=∠DBE,
∴BE=DE,
∵的面积是22.5,,
∴ ,解得: ,
∴,
在 中,由勾股定理得:
,
∴ .
故选:C
【点睛】
本题主要考查了折叠和矩形的性质,勾股定理,熟练掌握折叠和矩形的性质,勾股定理是解题的关键.
6、D
【解析】
【分析】
先计算出正方形的对角线长,即可逐项进行判定求解.
【详解】
解:A、正方形的边长为2,
对角线长为,
长度为的线段能被边长为2的正方形及其内部所覆盖,故不符合题意;
B、边长为2的等边三角形能被边长为2的正方形及其内部所覆盖,故不符合题意;
C、斜边为2的直角三角形能被边长为2的正方形及其内部所覆盖,故不符合题意;
D、而面积为4的菱形对角线长可以为8,故不能被边长为2的正方形及其内部所覆盖,故符合题意,
故选:D.
【点睛】
本题主要考查正方形的性质,等边三角形的性质,菱形的性质等知识,解题的关键是掌握相关图形的特征进行判断.
7、B
【解析】
【分析】
先证明四边形ADCF是平行四边形,再证明AC=DF即可.
【详解】
解:∵E是AC中点,
∴AE=EC,
∵DE=EF,
∴四边形ADCF是平行四边形,
∵AD=DB,AE=EC,
∴DE=BC,
∴DF=BC,
∵CA=CB,
∴AC=DF,
∴四边形ADCF是矩形;
故选:B.
【点睛】
本题考查了矩形的判定、等腰三角形的性质、平行四边形的判定、三角形中位线定理;熟记对角线相等的平行四边形是矩形是解决问题的关键.
8、A
【解析】
【分析】
根据正方形的性质,全等三角形的性质和三角形的面积公式解答即可.
【详解】
∵正方形ABCD,
∴AB=AD,∠BAC=DAC,
∵AE=AE,∴△ABE≌△ADE,
∴=5,同理△CBE≌△CDE,
∴,
∵,
∴CDE的面积为: =3,
故选A.
【点睛】
本题考查了正方形的性质,关键是根据全等三角形的性质和三角形的面积公式解答.
9、A
【解析】
【分析】
设D(﹣1,0),作D点关于直线的对称点E,连接OE,交直线于A,连接AD,,作ES⊥x轴于S,根据题意OE就是OB+CB的最小值,由直线的解析式求得F的坐标,进而求得ED的长,从而求得OS和ES,然后根据勾股定理即可求得OE.
【详解】
解:设D(﹣1,0),作D点关于直线的对称点E,连接OE,交直线于A,连接AD,,交于点,作ES⊥x轴于S,
∵AB∥DC,且AB=OD=OC=1,
∴四边形ABOD和四边形ABCO是平行四边形,
∴AD=OB,OA=BC,
∴AD+OA=OB+BC,
∵AE=AD,
∴AE+OA=OB+BC,
即OE=OB+BC,
∴OB+CB的最小值为OE,
由,
当时,,
解得:,
,
,
当时,,
,
,
,
取的中点,过作轴的垂线交于,
,
当时,,
,
,
,
为的中点,
,
为等边三角形,
,
,
,
,
∴FD=3,∠FDG=60°,
∴DG=DF=,
∴DE=2DG=3,
∴ES=DE=,DS=DE=,
∴OS=,
∴OE==,
∴OB+CB的最小值为,
故选:A.
【点睛】
本题考查了一次函数的性质,轴对称﹣最短路线问题以及平行四边形的性质、勾股定理的应用,解题的关键是证得OE是OB+CB的最小值.
10、D
【解析】
【分析】
根据平行四边形的性质解答.
【详解】
解:∵四边形ABCD是平行四边形,
∴AO=OC,故A正确;
∴,故B正确;
∴AD=BC,故C正确;
故选:D.
【点睛】
此题考查了平行四边形的性质,熟记平行四边形的性质是解题的关键.
二、填空题
1、
【解析】
【分析】
根据已知条件和勾股定理求出OB2的长度即可求出B2的坐标,再根据题意和图形可看出每经过一次变化,正方形都逆时针旋转45°,正方形的边长都乘以所以可求出从B到B2020变化的坐标.
【详解】
解:∵四边形OABC是边长为1正方形,
∴
∴
∴B1的坐标是,
∴,
∴B2的坐标是
根据题意和图形可看出每经过一次变化,正方形逆时针旋转45°,其边长乘以,
∴B3的坐标是
∴B4的坐标是
∴旋转8次则OB旋转一周,
∵从B到B2020经过了2020次变化,2020÷8=252…4,
∴从B到B2020与B4都在x轴负半轴上,
∴点B2020的坐标是
【点睛】
本题主要考查了规律型-点的坐标,解决本题的关键是利用正方形的变化过程寻找点的变化规律.
2、 平行 对角线 AC BD 对边 对角
【解析】
略
3、540°
【解析】
【分析】
根据n边形的内角和公式(n-2)·180°求解即可.
【详解】
解:五边形内角和为(5-2)×180°=540°,
故答案为:540°.
【点睛】
本题考查多边形的内角和,熟记多边形的内角和公式是解答的关键.
4、(0,-5)
【解析】
【分析】
在Rt△ODC中,利用勾股定理求出OC即可解决问题.
【详解】
解:∵A(12,13),
∴OD=12,AD=13,
∵四边形ABCD是菱形,
∴CD=AD=13,
在Rt△ODC中,,
∴C(0,-5).
故答案为:(0,-5)
【点睛】
本题考查菱形的性质、勾股定理等知识,解题的关键是灵活运用所学知识解决问题.
5、
【解析】
【分析】
根据正多边形外角和和内角和的性质,得、;根据四边形内角和的性质,计算得;根据五边形内角和的性质,计算得,再根据三角形外角的性质计算,即可得到答案.
【详解】
如图,延长BA
∵正十边形
∴,正十边形内角,即
根据题意,得四边形内角和为:,且
∴
∴
根据题意,得五边形内角和为:,且
∴
∴
故答案为:.
【点睛】
本题考查了正多边形、三角形外角的知识;解题的关键是熟练掌握正多边形外角和、正多边形内角和的性质,从而完成求解.
三、解答题
1、见解析
【解析】
【分析】
根据平行四边形的性质可得AB∥CD,AB=CD,根据平行线的性质可得∠BAE=∠CFE,根据中点的定义可得EB=EC,利用AAS可证明△ABE≌△FCE,可得AB=CF,进而可得结论.
【详解】
∵四边形ABCD是平行四边形,
∴AB∥CD,AB=CD,
∴∠BAE=∠CFE;
∵E为BC中点,
∴EB=EC,
在△ABE与△FCE中,
,
∴△ABE≌△FCE(AAS),
∴AB=CF,
∴DC=CF.
【点睛】
本题考查平行四边形的性质及全等三角形的判定与性质,熟练掌握相关性质及判定定理是解题关键.
2、 (1)见解析;
(2)①3;②
【解析】
【分析】
(1)根据三角形中位线的性质得到DEAB,BD=CD,即可证得四边形ABDF是平行四边形,得到AF=BD=CD,由此得到结论;
(2)①由点D、E分别是边BC、AC的中点,得到DE=AB,由四边形是平行四边形,得到DF=2DE=AB=3,再根据矩形的性质得到AC=DF=3;
②根据菱形的性质得到DF⊥AC,推出AB⊥AC,利用勾股定理求出AC,得到CE,利用面积法求出答案.
(1)
证明:∵点D、E分别是边BC、AC的中点,
∴DEAB,BD=CD,
∵,
∴四边形ABDF是平行四边形,
∴AF=BD=CD,
∴四边形是平行四边形;
(2)
解:①∵点D、E分别是边BC、AC的中点,
∴DE=AB,
∵四边形是平行四边形,
∴DF=2DE=AB=3,
∵四边形是矩形,
∴AC=DF=3,
故答案为:3;
②∵四边形是菱形,
∴DF⊥AC,
∵DEAB,
∴AB⊥AC,
∴AD=BC=2.5,
∴AE=EC=2,
∵
∴
∴,
故答案为:.
【点睛】
此题考查了平行四边形的判定及性质,矩形的性质,菱形的性质,三角形中位线的判定及性质,勾股定理,是一道较为综合的几何题,熟练掌握各知识点并应用是解题的关键.
3、 (1)=
(2)∠P=90°-∠A
(3)∠P=180°-∠BAD-∠CDA,探究见解析
【解析】
【分析】
(1)根据三角形外角的性质得:∠DBC=∠A+∠ACB,∠ECB=∠A+∠ABC,两式相加可得结论;
(2)根据角平分线的定义得:∠CBP=∠DBC,∠BCP=∠ECB,根据三角形内角和可得:∠P的式子,代入(1)中得的结论:∠DBC+∠ECB=180°+∠A,可得:∠P=90°−∠A;
(3)根据平角的定义得:∠EBC=180°-∠1,∠FCB=180°-∠2,由角平分线得:∠3=∠EBC=90°−∠1,∠4=∠FCB=90°−∠2,相加可得:∠3+∠4=180°−(∠1+∠2),再由四边形的内角和与三角形的内角和可得结论.
(1)
∠DBC+∠ECB-∠A=180°,
理由是:∵∠DBC=∠A+∠ACB,∠ECB=∠A+∠ABC,
∴∠DBC+∠ECB=2∠A+∠ACB+∠ABC=180°+∠A,
∴∠DBC+∠ECB-∠A=180°,
故答案为:=;
(2)
∠P=90°-∠A,
理由是:∵BP平分∠DBC,CP平分∠ECB,
∴∠CBP=∠DBC,∠BCP=∠ECB,
∵△BPC中,∠P=180°-∠CBP-∠BCP=180°-(∠DBC+∠ECB),
∵∠DBC+∠ECB=180°+∠A,
∴∠P=180°-(180°+∠A)=90°-∠A.
故答案为:∠P=90°-∠A,
(3)
∠P=180°-∠BAD-∠CDA,
理由是:如图,
∵∠EBC=180°-∠1,∠FCB=180°-∠2,
∵BP平分∠EBC,CP平分∠FCB,
∴∠3=∠EBC=90°-∠1,∠4=∠FCB=90°-∠2,
∴∠3+∠4=180°-(∠1+∠2),
∵四边形ABCD中,∠1+∠2=360°-(∠BAD+∠CDA),
又∵△PBC中,∠P=180°-(∠3+∠4)=(∠1+∠2),
∴∠P=×[360°-(∠BAD+∠CDA)]=180°-(∠BAD+∠CDA)=180°-∠BAD-∠CDA.
【点睛】
本题是四边形和三角形的综合问题,考查了三角形和四边形的内角和定理、三角形外角的性质、角平分线的定义等知识,熟练掌握三角形外角的性质是关键.
4、 (1)-3,3,1,3,-3,-1
(2)①-2;②
(3)或
【解析】
【分析】
(1)分别以、、为对角线,利用平行四边形以及平移的性质可得点,,的坐标;
(2)①根据平行公理得,、在同一直线上,、、在同一直线上,可得是等腰三角形△的中位线,求出,即可得的值;
②由①求得的的值可得,的坐标,分别求出直线过点,时的值即可求解;
(3)由题意用表示出点,,的坐标,画出图形,求出直线与△交于点,时的值即可求解.
(1)
解:,,
,轴.
以为对角线时,
四边形是平行四边形,
,,
将向左平移2个单位长度可得,即;
以为对角线时,
四边形是平行四边形,
,,
将向右平移2个单位长度可得,即;
以为对角线时,
四边形是平行四边形,
对角线的中点与的中点重合,
的中点为,,
.
故答案为:,,;
(2)
解:①如图,若△是以为底的等腰三角形,
四边形,,是平行四边形,
,,,
、、在同一直线上,、、在同一直线上,,
是等腰三角形△的中位线,
,,
,,,
,
;
②由①得,
,.
当直线过点时,,解得:,
当直线过点时,,解得:,
的取值范围为;
(3)
解:如图,,,,
,.
连接、交于点,
四边形是平行四边形,
点、关于点对称,
,
直线与△有公共点,
当直线与△交于点,,解得:,
时,直线与△有公共点;
当直线与△交于点,,解得:,
时,直线与△有公共点;
综上,的取值范围为或.
【点睛】
本题考查了平行四边形的性质,坐标与图形性质,平移的性质,一次函数的性质,一次函数图象上点的坐标特征等知识,解题的关键是利用数形结合与分类讨论的思想进行求解.
5、 (1)见解析;
(2)①见解析;②.
【解析】
【分析】
(1)由AA证明,再由相似三角形对应边称比例得到,继而解题;
(2)①由“射影定理”分别解得,,整理出,再结合即可证明;
②由勾股定理解得,再根据得到,代入数值解题即可.
(1)
证明:
(2)
①四边形ABCD是正方形
②在中,
在,
.
【点睛】
本题考查相似三角形的综合题,涉及勾股定理、正方形等知识,是重要考点,掌握相关知识是解题关键.
相关试卷
这是一份冀教版八年级下册第二十二章 四边形综合与测试优秀同步训练题,共29页。试卷主要包含了下列说法不正确的是等内容,欢迎下载使用。
这是一份2021学年第二十二章 四边形综合与测试优秀当堂检测题,共34页。试卷主要包含了如图,E,下列命题是真命题的有个.等内容,欢迎下载使用。
这是一份初中数学冀教版八年级下册第二十二章 四边形综合与测试精品课时练习,共30页。
![文档详情页底部广告位](http://img.51jiaoxi.com/images/257d7bc79dd514896def3dc0b2e3f598.jpg)