2020-2021学年第二十二章 四边形综合与测试优秀课时作业
展开
这是一份2020-2021学年第二十二章 四边形综合与测试优秀课时作业,共26页。试卷主要包含了六边形对角线的条数共有等内容,欢迎下载使用。
八年级数学下册第二十二章四边形难点解析 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、如图.在长方形纸片ABCD中,AB=12,AD=20,所示,折叠纸片,使点A落在BC边上的A′处,折痕为PQ,当点A′在BC边上移动时,折痕的端点P、Q也随之移动.点P,Q分别在边AB、AD上移动,则点A′在BC边上可移动的最大距离为( )A.8 B.10 C.12 D.162、能够判断一个四边形是矩形的条件是( )A.对角线相等 B.对角线垂直C.对角线互相平分且相等 D.对角线垂直且相等3、如图,在正方形ABCD中,AB=3,点E,F分别在边AB,CD上,∠EFD=60°.若将四边形EBCF沿EF折叠,点B′恰好落在AD边上,则BE的长度为( )A.1 B. C. D.24、如图,DE是的中位线,若,则BC的长为( )A.8 B.7 C.6 D.7.55、六边形对角线的条数共有( )A.9 B.18 C.27 D.546、如图,已知正方形的边长为4,是对角线上一点,于点,于点,连接,.给出下列结论:①;②四边形的周长为8;③;④的最小值为;⑤;⑥.其中正确结论有几个( )A.3 B.4 C.5 D.67、如图,在边长为的正方形ABCD中,点E是对角线AC上一点,且于点F,连接DE,当时,( )A.1 B. C. D.8、下列命题中,是真命题的是( ).A.三角形的外心是三角形三个内角角平分线的交点B.满足的三个数,,是勾股数C.对角线相等的四边形各边中点连线所得四边形是矩形D.五边形的内角和为9、在下列条件中,不能判定四边形是平行四边形的是( )A.AB∥CD,AD∥BC B.AB=CD,AD=BCC.AB ∥CD,AB=CD D.AB∥CD,AD=BC10、若菱形的周长为8,高为2,则菱形的面积为( )A.2 B.4 C.8 D.16第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、如图,在菱形ABCD中,点M、N分别交于AB、CD上,AM=CN,MN与AC交于点O,连接BO.若∠OBC=62°,则∠DAC为____°.2、平行四边形的对角线________.几何语言:∵四边形ABCD是平行四边形,∴AO=________,BO=________(平行四边形的对角线互相平分).3、如图,四边形是菱形,与相交于点,添加一个条件:________,可使它成为正方形.4、将矩形纸片ABCD(AB<BC)沿过点B的直线折叠,使点A落在BC边上的点F处,折痕为BE(如图1);再沿过点E的直线折叠,使点D落在BE上的点D'处,折痕为EG(如图2):再展开纸片(如图3),则图3中∠FEG的大小是__.5、如图,∠EAD和∠DCF是四边形ABCD的外角,∠EAD的平分线AG和∠DCF的平分线CG相交于点G.若∠B=m°,∠D=n°,则∠G=______°.(用含m、n的代数式表示)三、解答题(5小题,每小题10分,共计50分)1、已知:在平行四边形ABCD中,分别延长BA,DC到点E,H,使得BE=2AB,DH=2CD.连接EH,分别交AD,BC于点F,G.(1)求证:AF=CG;(2)连接BD交EH于点O,若EH⊥BD,则当线段AB与线段AD满足什么数量关系时,四边形BEDH是正方形?2、如图所示,在四边形ABCD中,∠A=80°,∠C=75°,∠ADE为四边形ABCD的一个外角,且∠ADE=125°,试求出∠B的度数.3、(1)【探究一】如图1,我们可以用不同的算法来计算图形的面积.①方法1:如果把图1看成一个大正方形,那么它的面积为 ;②方法2:如果把图1看成是由2个大小不同的正方形和2个大小相同的小长方形组成的图形,那么它的面积为 ;(写成关于a、b的两次三项式)用两种不同的算法计算同一个图形的面积,可以得到等式 .(2)【探究二】如图2,从一个顶点处引n条射线,请你数一数共有多少个锐角呢?①方法1:一路往下数,不回头数.以OA1为边的锐角有∠A1OA2、∠A1OA3、∠A1OA4、…、∠A1OAn,共有(n-1)个;以OA2为边的锐角有∠A2OA3、∠A2OA4、…、∠A2OAn,共有(n-2)个;以OA3为边的锐角有∠A3OA4、…、∠A3OAn,共有(n-3)个;以OAn-1为边的锐角有∠An-1OAn,共有1个;则图中锐角的总个数是 ;②方法2:每一条边都能和除它以外的(n-1)条边形成锐角,共有n条边,可形成n(n-1)个锐角,但所有锐角都数了两遍,所以锐角的总个数是 ;用两种不同的方法数锐角个数,可以得到等式 .(3)【应用】分别利用【探究一】中得到的等式和【探究二】中运用的思想解决问题.①计算:19782+20222;②多边形中连接任意两个不相邻顶点的线段叫做对角线,如五边形共有5条对角线,则十七边形共有 条对角线,n边形共有 条对角线.4、数学学习小组在学习了三角形中位线定理后,对四边形中有关中点的问题进行了探究:如图,在四边形中,E,F分别是边的中点.(1)若,,,,求的长.小兰说:取的中点P,连接,.利用三角形中位线定理就能解答此题,请你根据小兰提供的思路解答此题;(2)小花说:根据小兰的解题思路得到启发,如果满足,就能得到、、的数量关系,你觉得小花说得对吗?若对,请你帮小花得到、、的数量关系,并说明理由.5、如图,在Rt△ABC中,∠ABC=90°,∠C=30°,AC=12cm,点E从点A出发沿AB以每秒1cm的速度向点B运动,同时点D从点C出发沿CA以每秒2cm的速度向点A运动,运动时间为t秒(0<t<6),过点D作DF⊥BC于点F.(1)试用含t的式子表示AE、AD、DF的长;(2)如图①,连接EF,求证四边形AEFD是平行四边形;(3)如图②,连接DE,当t为何值时,四边形EBFD是矩形?并说明理由. -参考答案-一、单选题1、A【解析】【分析】根据翻折的性质,可得BA′与AP的关系,根据线段的和差,可得A′C,根据勾股定理,可得A′C,根据线段的和差,可得答案.【详解】解:①在长方形纸片ABCD中,AB=12,AD=20,∴BC=AD=20,当p与B重合时,BA′=BA=12,CA′=BC-BA′=20-12=8,②当Q与D重合时,由折叠得A′D=AD=20,由勾股定理,得CA′==16,CA′最远是16,CA′最近是8,点A′在BC边上可移动的最大距离为16-8=8,故选:A.【点睛】本题考查了矩形的性质,翻折变换,利用了翻折的性质,勾股定理,分类讨论是解题关键.2、C【解析】略3、D【解析】【分析】由正方形的性质得出∠EFD=∠BEF=60°,由折叠的性质得出∠BEF=∠FEB'=60°,BE=B'E,设BE=x,则B'E=x,AE=3-x,由直角三角形的性质可得:2(3-x)=x,解方程求出x即可得出答案.【详解】解:∵四边形ABCD是正方形,∴AB∥CD,∠A=90°,∴∠EFD=∠BEF=60°,∵将四边形EBCF沿EF折叠,点B'恰好落在AD边上,∴∠BEF=∠FEB'=60°,BE=B'E,∴∠AEB'=180°-∠BEF-∠FEB'=60°,∴B'E=2AE,设BE=x,则B'E=x,AE=3-x,∴2(3-x)=x,解得x=2.故选:D.【点睛】本题考查了正方形的性质,折叠的性质,含30°角的直角三角形的性质等知识点,能综合性运用性质进行推理是解此题的关键.4、A【解析】【分析】已知DE是的中位线,,根据中位线定理即可求得BC的长.【详解】是的中位线,,,故选:A.【点睛】此题主要考查三角形中位线定理:三角形的中位线平行于第三边,并且等于第三边的一半;掌握中位线定理是解题的关键.5、A【解析】【分析】n边形对角线的总条数为:(n≥3,且n为整数),由此可得出答案.【详解】解:六边形的对角线的条数= =9.故选:A.【点睛】本题考查了多边形的对角线的知识,属于基础题,解答本题的关键是掌握:n边形对角线的总条数为:(n≥3,且n为整数).6、D【解析】【分析】如图,过点作于点,连接,可说明四边形为矩形,,,是等腰直角三角形,;①中,可得为等腰直角三角形,进而求,由于四边形是平行四边形,,故可知;②,四边形为矩形,进而可求矩形的周长;③证明,由全等可知,进而可说明;④,当最小时,最小,即时,最小,计算即可;⑤在和中,勾股定理求得,将线段等量替换求解即可;⑥如图1,延长与交于点,证明,得,,,进而可说明.【详解】解:如图,过点作于点,连接,由题意知∴四边形为平行四边形∵∴四边形为矩形∴∵∴∵∴∴是等腰直角三角形∴①∵,∴为等腰直角三角形∴,∴∴四边形是平行四边形∴∴故①正确;②∵∴四边形为矩形∴四边形的周长故②正确;③四边形为矩形∵在和中∵∴∴∴故③正确;④∵当最小时,最小∴当时,即时,的最小值等于故④正确;⑤在和中,,∴故⑤正确;⑥如图1,延长与交于点 ∵在和中∵∴∴∵∴∴故⑥正确;综上,①②③④⑤⑥正确,故选:.【点睛】本题考查了正方形,矩形的判定与性质,勾股定理,等腰直角三角形,三角形全等.解题的关键在于对知识的灵活综合运用.7、C【解析】【分析】证明,则,计算的长,得,证明是等腰直角三角形,可得的长.【详解】解:四边形是正方形,,,,,,,,,,,,,是等腰直角三角形,,故选:C.【点睛】本题考查正方形的性质,勾股定理,等腰直角三角形,三角形的外角的性质等知识,解题的关键是在正方形中学会利用等腰直角三角形的性质解决问题,属于中考常考题型.8、D【解析】【分析】正确的命题是真命题,根据定义解答.【详解】解:A. 三角形的外心是三角形三条边垂直平分线的交点,故该项不符合题意;B. 满足的三个正整数,,是勾股数,故该项不符合题意;C. 对角线相等的四边形各边中点连线所得四边形是菱形,故该项不符合题意;D. 五边形的内角和为,故该项符合题意;故选:D.【点睛】此题考查了真命题的定义,正确掌握三角形外心的定义,勾股数的定义,中点四边形的判定定理及多边形内角和的计算公式是解题的关键.9、D【解析】略10、B【解析】【分析】根据周长求出边长,利用菱形的面积公式即可求解.【详解】∵菱形的周长为8,∴边长=2,∴菱形的面积=2×2=4,故选:B.【点睛】此题考查菱形的性质,熟练掌握菱形的面积=底×高是解题的关键.二、填空题1、28【解析】【分析】由全等三角形的性质可证△AOM≌△CON,可得AO=CO,由等腰三角形的性质可得BO⊥AC,即可求解.【详解】解:∵四边形ABCD是菱形,∴AB//CD,AB=BC,BC//AD,∴∠MAO=∠NCO,∠BCA=∠CAD.在△AOM和△CON中,,∴△AOM≌△CON(AAS),∴AO=CO,又∵AB=BC,∴BO⊥AC,∴∠BCO=90°﹣∠OBC=28°=∠DAC.故答案为:28.【点睛】本题考查了菱形的性质,等腰三角形的性质,全等三角形的判定和性质,掌握菱形的性质是本题的关键.2、 互相平分 CO DO【解析】略3、【解析】【分析】根据“有一个角是直角的菱形是正方形”可得到添加的条件.【详解】解:由于四边形 是菱形,如果 ,那么四边形是正方形.故答案为: .【点睛】本题考查了正方形的判定,解决本题的关键是熟练掌握正方形的判定定理.4、22.5°【解析】【分析】根据折叠的性质可知,∠A=∠EFB=90°,AB=BF,以及纸片ABCD为矩形可得,∠AEF为直角,进而可以判断四边形ABFE为正方形,进而通过∠AEB,∠BEG的角度计算出∠FEG的大小.【详解】解:由折叠可知△AEB≌△FEB,∴∠A=∠EFB=90°,AB=BF,∵纸片ABCD为矩形,∴AE∥BF,∴∠AEF=180°-∠BFE=90°,∵AB=BF,∠A=∠AEF=∠EFB=90°,∴四边形ABFE为正方形,∴∠AEB=45°,∴∠BED=180°-45°=135°,∴∠BEG=135°÷2=67.5°,∴∠FEG=67.5°-45°=22.5°.【点睛】本题考查折叠的性质,矩形的性质,正方形的判定与性质,以及平行的相关性质,能够将正方形与矩形的性质相结合是解决本题的关键.5、【解析】【分析】根据四边形的内角和定理可得 ,从而得到,再由∠EAD的平分线AG和∠DCF的平分线CG相交于点G.可得,进而得到,再根据 ,即可求解.【详解】解:∵∠B=m°,∠D=n°,∴ ,∵∠EAD和∠DCF是四边形ABCD的外角,∴ ,∵∠EAD的平分线AG和∠DCF的平分线CG相交于点G.∴ ,∴ ,∵ ,∴ .故答案为:【点睛】本题主要考查了多边形的内角和定理,角平分线的应用,补角的应用,熟练掌握多边形的内角和定理是解题的关键.三、解答题1、 (1)见解析(2)当AD=AB时,四边形BEDH是正方形【解析】【分析】(1)要证明AF=CG,只要证明△EAF≌△HCG即可;(2)利用已知可得四边形BEDH是菱形,所以当AE2+DE2=AD2时,∠BED=90°,四边形BEDH是正方形.(1)证明:∵四边形ABCD是平行四边形,∴AB∥CD,AB=CD,∠BAD=∠BCD,∴∠AEF=∠CHG,∵BE=2AB,DH=2CD,∴BE=DH,∴BE-AB=DH-DC,∴AE=CH,∴∠BAD+∠EAF=180°,∠BCD+∠GCH=180°,∴∠EAF=∠GCH,∴△EAF≌△HCG(ASA),∴AF=CG;(2)解:当AD=AB时,四边形BEDH是正方形;理由:∵BE∥DH,BE=DH,∴四边形EBHD是平行四边形,∵EH⊥BD,∴四边形EBHD是菱形,∴ED=EB=2AB,当AE2+DE2=AD2时,则∠BED=90°,∴四边形BEDH是正方形,即AB2+(2AB)2=AD2,∴AD=AB,∴当AD=AB时,四边形BEDH是正方形..【点睛】本题考查了正方形的判定,菱形的判定,平行四边形的性质,全等三角形的判定与性质,结合图形分析并熟练掌握正方形的判定,平行四边形的性质,是解题的关键.2、150°【解析】【分析】先根据邻补角的定义求出∠ADC的度数,再根据四边形的内角和求出∠B的度数.【详解】解:∵∠ADE为四边形ABCD的一个外角,且∠ADE=125°,∴∠ADC=180°-∠ADE=55°,∵∠A+∠B+∠C+∠ADE=360°,∴∠B=360°-∠A-∠C-∠ADE=360°-80°-75°-55°=150°.【点睛】此题考查了多边形外角定义,多边形的内角和,熟记多边形的内角和进行计算是解题的关键.3、(1)①;②;=;(2)①(n-1)+(n-2)+(n-3)+……+1;②;(n-1)+(n-2)+(n-3)+……+1=;(3)①8000968;②119,n(n-3)【解析】【分析】(1)①根据边长为(a+b)的正方形面积公式求解即可;②利用矩形和正方形的面积公式求解即可;(2)①根据题中的数据求和即可;②根据题意求解即可;(3)①利用(1)的规律求解即可;②根据n边形从一个顶点出发可引出(n-3)条对角线.从n个顶点出发引出(n-3)条,而每条重复一次,所以n边形对角线的总条数为n(n-3)(n≥3,且n为整数)可得答案.【详解】解:(1)①大正方形的面积为;②由2个大小不同的正方形和2个大小相同的小长方形组成的图形的面积为;可以得到等式:=;故答案为:①;②;=;(2)①图中锐角的总个数是:(n-1)+(n-2)+(n-3)+……+1;②锐角的总个数是n(n-1);可以得到等式为(n-1)+(n-2)+(n-3)+……+1=n(n-1);故答案为:①(n-1)+(n-2)+(n-3)+……+1;②n(n-1);(n-1)+(n-2)+(n-3)+……+1=n(n-1);(3)①19782+20222=[2000+(-22)]2+(2000+22)2=20002+(-22)2+2×2000×(-22)+20002+222+2×2000×22=2×(20002+222) =2×[4000000+(20+2)2]=2×[4000000+(202+22+2×20×2)]=8000968;②一个四边形共有2条对角线,即×4×(4-3)=2;一个五边形共有5条对角线,即×5×(5-3)=5;一个六边形共有9条对角线,即×6×(6-3)=9;……,一个十七边形共有×17×(17-3)=119条对角线;一个n边形共有n(n-3)(n≥3,且n为整数)条对角线.故答案为:119,n(n-3).【点睛】本题考查了图形的变化规律,完全平方公式,多边形的对角线,对于这种图形的变化规律的问题,读懂题目信息,找到变化规律是解题的关键.4、 (1)(2),理由见解析【解析】【分析】(1)根据题意作出辅助线,根据中位线的性质求得,根据平行线的性质求得,进而勾股定理即可求得;(2)方法同(1).(1)解:如图,取的中点P,连接,, P,E,F分别是边的中点, ,,,,,,,,,在中,,(2),理由如下,如图,取的中点P,连接,, P,E,F分别是边的中点,,,,,,,,在中,,即【点睛】本题考查了三角形中位线定理,勾股定理,平行线的性质,掌握中位线定理是解题的关键.5、 (1)AE=t,AD=12﹣2t,DF=t(2)见解析(3)3,理由见解析【解析】【分析】(1)根据题意用含t的式子表示AE、CD,结合图形表示出AD,根据直角三角形的性质表示出DF;(2)根据对边平行且相等的四边形是平行四边形证明;(3)根据矩形的定义列出方程,解方程即可.(1)解:由题意得,AE=t,CD=2t,则AD=AC﹣CD=12﹣2t,∵DF⊥BC,∠C=30°,∴DF=CD=t;(2)解:∵∠ABC=90°,DF⊥BC,∴, ∵AE=t,DF=t,∴AE=DF,∴四边形AEFD是平行四边形;(3)解:当t=3时,四边形EBFD是矩形,理由如下:∵∠ABC=90°,∠C=30°,∴AB=AC=6cm,∵, ∴BE=DF时,四边形EBFD是平行四边形,即6﹣t=t,解得,t=3,∵∠ABC=90°,∴四边形EBFD是矩形,∴t=3时,四边形EBFD是矩形.【点睛】此题考查了30度角的性质,平行四边形的判定及性质,矩形的定义,一元一次方程,三角形与动点问题,熟练掌握四边形的知识并综合应用是解题的关键.
相关试卷
这是一份初中第二十二章 四边形综合与测试优秀复习练习题,共26页。
这是一份初中数学冀教版八年级下册第二十二章 四边形综合与测试精品同步达标检测题,共22页。
这是一份初中数学冀教版八年级下册第二十二章 四边形综合与测试精品课后练习题,共26页。