![2022年冀教版八年级数学下册第二十二章四边形专项攻克试题(名师精选)第1页](http://img-preview.51jiaoxi.com/2/3/12735417/0/0.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![2022年冀教版八年级数学下册第二十二章四边形专项攻克试题(名师精选)第2页](http://img-preview.51jiaoxi.com/2/3/12735417/0/1.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![2022年冀教版八年级数学下册第二十二章四边形专项攻克试题(名师精选)第3页](http://img-preview.51jiaoxi.com/2/3/12735417/0/2.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
初中数学冀教版八年级下册第二十二章 四边形综合与测试优秀随堂练习题
展开
这是一份初中数学冀教版八年级下册第二十二章 四边形综合与测试优秀随堂练习题,共28页。试卷主要包含了如图,在正方形ABCD中,点E等内容,欢迎下载使用。
考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)
一、单选题(10小题,每小题3分,共计30分)
1、如图,在边长为的正方形ABCD中,点E是对角线AC上一点,且于点F,连接DE,当时,( )
A.1B.C.D.
2、如图,在矩形ABCD中,动点P从点A出发,沿A→B→C运动,设,点D到直线PA的距离为y,且y关于x的函数图象如图所示,则当和的面积相等时,y的值为( )
A.B.C.D.
3、下列说法不正确的是( )
A.矩形的对角线相等
B.直角三角形斜边上的中线等于斜边的一半
C.对角线互相垂直且相等的四边形是正方形
D.菱形的对角线互相垂直
4、下列命题中,是真命题的是( ).A.三角形的外心是三角形三个内角角平分线的交点
B.满足的三个数,,是勾股数
C.对角线相等的四边形各边中点连线所得四边形是矩形
D.五边形的内角和为
5、如图,在正方形ABCD中,对角线AC与BD相交于点O,E为BC上一点,CE=6,F为DE的中点.若OF的长为1,则△CEF的周长为( )
A.14B.16C.18D.12
6、如图,菱形ABCD的对角线AC和BD相交于点O,,,E是OB的中点,P是CD的中点,连接PE,则线段PE的长为( )
A.B.C.D.
7、如图,在正方形ABCD中,,点E在对角线AC上,若,则CDE的面积为( )
A.3B.4C.5D.6
8、如图,在正方形ABCD中,点E、点F分别在AD、CD上,且AE=DF,若四边形OEDF的面积是1,OA的长为1,则正方形的边长AB为( )
A.1B.2C.D.2
9、如图,在给定的正方形中,点从点出发,沿边方向向终点运动, 交于点,以,为邻边构造平行四边形,连接,则的度数的变化情况是( )
A.一直减小B.一直减小后增大C.一直不变D.先增大后减小
10、在中,若,则的度数是( )
A.B.C.D.
第Ⅱ卷(非选择题 70分)
二、填空题(5小题,每小题4分,共计20分)
1、如图,在平面直角坐标系xOy中,菱形ABCD的顶点A,D分别在y轴的正半轴和负半轴上,顶点B在x轴的负半轴上,若OA=3OD,S菱形ABCD=16,则点C的坐标为______.
2、如图①,小刚沿菱形纸片ABCD各边中点的连线裁剪得到四边形纸片EFGH,再将纸片EFGH按图②所示的方式分别沿MN、PQ折叠,当PNEF时,若阴影部分的周长之和为16,△AEH,△CFG的面积之和为12,则菱形纸片ABCD的一条对角线BD的长为_____.
3、如图,矩形的两条对角线相交于点,已知,,则矩形对角线的长为_______.
4、中,已知AB=CD=4,BC=6,则当AD=________时,四边形ABCD是平行四边形.
5、如图,在长方形中,,,、分别在边、上,且.现将四边形沿折叠,点,的对应点分别为点,,当点恰好落在边上时,则的长为______.
三、解答题(5小题,每小题10分,共计50分)
1、如图,在四边形ABCD中,AB=AD,AD//BC
(1)在图中,用尺规作线段BD的垂直平分线EF,分别交BD、BC于点E、F.(保留作图痕迹,不写作法)
(2)连接DF,证明四边形ABFD为菱形.
2、已知:△ABC,AD为BC边上的中线,点M为AD上一动点(不与点A重合),过点M作ME∥AB,过点C作CE∥AD,连接AE.
(1)如图1,当点M与点D重合时,求证:①△ABM≌△EMC;②四边形ABME是平行四边形
(2)如图2,当点M不与点D重合时,试判断四边形ABME还是平行四边形吗?如果是,请给出证明;如果不是,请说明理由;
(3)如图3,延长BM交AC于点N,若点M为AD的中点,求的值.
3、已知正多边形的内角和比外角和大720°,求该正多边形所有对角线的条数.
4、如图,▱ABCD中,E为BC边的中点,求证:DC=CF.
5、已知:如图,在▱ABCD中,AE⊥BC,,点E,F分别为垂足.
(1)求证:△ABE≌△CDF;
(2)求证:四边形AECF是矩形.
-参考答案-
一、单选题
1、C
【解析】
【分析】
证明,则,计算的长,得,证明是等腰直角三角形,可得的长.
【详解】
解:四边形是正方形,
,,,
,
,
,
,
,
,
,
,
,
是等腰直角三角形,
,
故选:C.
【点睛】
本题考查正方形的性质,勾股定理,等腰直角三角形,三角形的外角的性质等知识,解题的关键是在正方形中学会利用等腰直角三角形的性质解决问题,属于中考常考题型.
2、D
【解析】
【分析】
先结合图象分析出矩形AD和AB边长分别为4和3,当△PCD和△PAB的面积相等时可知P点为BC中点,利用面积相等求解y值.
【详解】
解:当P点在AB上运动时,D点到AP的距离不变始终是AD长,从图象可以看出AD=4,
当P点到达B点时,从图象看出x=3,即AB=3.
当△PCD和△PAB的面积相等时,P点在BC中点处,此时△ADP面积为,
在Rt△ABP中,,
由面积相等可知:,解得,
故选:D.
【点睛】
本题主要考查了函数图形的认识,分析图象找到对应的矩形的边长,解决动点问题就是“动中找静”,结合图象找到“折点处的数据真正含义”便可解决问题.
3、C
【解析】
【分析】
利用矩形的性质,直角三角形的性质,正方形的判定,菱形的性质依次判断可求解.
【详解】
解;矩形的对角线相等,故选项A不符合题意;
直角三角形斜边上的中线等于斜边的一半,故选项B不符合题意;
对角线互相垂直且相等的四边形不一定是正方形,故选项C符合题意;
菱形的对角线互相垂直,故选项D不符合题意;
故选:C.
【点睛】
本题考查了正方形的判定,矩形的性质,菱形的性质,直角三角形的性质,熟练运用这些性质解决问题是本题的关键.
4、D
【解析】
【分析】
正确的命题是真命题,根据定义解答.
【详解】
解:A. 三角形的外心是三角形三条边垂直平分线的交点,故该项不符合题意;
B. 满足的三个正整数,,是勾股数,故该项不符合题意;
C. 对角线相等的四边形各边中点连线所得四边形是菱形,故该项不符合题意;
D. 五边形的内角和为,故该项符合题意;
故选:D.
【点睛】
此题考查了真命题的定义,正确掌握三角形外心的定义,勾股数的定义,中点四边形的判定定理及多边形内角和的计算公式是解题的关键.
5、B
【解析】
【分析】
根据中位线的性质及直角三角形斜边上中线的性质可得:,结合图形得出的周长为,再由中位线的性质得出,在中,利用勾股定理确定,即可得出结论.
【详解】
解:在正方形ABCD中,,,,
∵F为DE的中点,O为BD的中点,
∴OF为的中位线且CF为斜边上的中线,
∴,
∴的周长为,
∵,
∴,
∵,
∴,
∴,
在中,,,,
∴,
∴的周长为,
故选:B.
【点睛】
题目主要考查正方形的性质,三角形中位线的性质,勾股定理,直角三角形斜边中线的性质等,理解题意,熟练掌握运用各个知识点是解题关键.
6、A
【解析】
【分析】
取OD的中点H,连接HP,由菱形的性质可得AC⊥BD,AO=CO=4,OB=OD=6,由三角形中位线定理可得,,可得EH=6,,由勾股定理可求PE的长.
【详解】
解:如图,取OD的中点H,连接HP
∵四边形ABCD是菱形
∴AC⊥BD,AO=CO=4,OB=OD=6
∵点H是OD中点,点E是OB的中点,点P是CD的中点
∴OH=3,OE=3,,
∴EH=6,
在中,由勾股定理可得:
∴
故选:A
【点睛】
本题考查了菱形的性质,三角形中位线定理,勾股定理,添加恰当辅助线构造直角三角形是解题的关键.
7、A
【解析】
【分析】
根据正方形的性质,全等三角形的性质和三角形的面积公式解答即可.
【详解】
∵正方形ABCD,
∴AB=AD,∠BAC=DAC,
∵AE=AE,∴△ABE≌△ADE,
∴=5,同理△CBE≌△CDE,
∴,
∵,
∴CDE的面积为: =3,
故选A.
【点睛】
本题考查了正方形的性质,关键是根据全等三角形的性质和三角形的面积公式解答.
8、C
【解析】
【分析】
根据正方形的性质得到AB=AD,∠BAE=∠ADF=90°,根据全等三角形的性质得到∠ABE=∠DAF,求得∠AOB=90°,根据三角形的面积公式得到OA=1,由勾股定理即可得到答案.
【详解】
解:∵四边形ABCD是正方形,
∴AB=AD,∠BAE=∠ADF=90°,
在△ABE与△DAF中,
,
∴△ABE≌△DAF(SAS),
∴∠ABE=∠DAF,
∴∠ABE+∠BAO=∠DAF+∠BAO=90°,
∴∠AOB=90°,
∵△ABE≌△DAF,
∴S△ABE=S△DAF,
∴S△ABE-S△AOE=S△DAF-S△AOE,
即S△ABO=S四边形OEDF=1,
∵OA=1,
∴BO=2,
∴AB=,
故选:C.
【点睛】
本题考查了正方形的性质,全等三角形的判定和性质,勾股定理,证得△ABE≌△DAF是解题的关键.
9、A
【解析】
【分析】
根据题意,作交的延长线于,证明是的角平分线即可解决问题.
【详解】
解:作交的延长线于,
∵四边形 是正方形,
∴,
,
∵,
∴,,
∴,
∴,
∴,
∵四边形是平行四边形,
∴,,
∵, ,
∴,
∵,.
∴,
∴,,
∴,
∴,
∵,
∴,
∴是的角平分线,
∴点的运动轨迹是的角平分线,
∵,
由图可知,点P从点D开始运动,所以一直减小,
故选:A .
【点睛】
本题考查了正方形的性质、全等三角形的判定和性质、平行四边形的性质等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题.
10、B
【解析】
【分析】
利用平行四边形的对角相等即可选择正确的选项.
【详解】
解:四边形是平行四边形,
,
,
,
故选:B.
【点睛】
本题考查了平行四边形的性质,解题的关键是记住平行四边形的性质,属于中考基础题.
二、填空题
1、(-2,-8)
【解析】
【分析】
由菱形的性质可得出,即,,再根据勾股定理可求出OB的长度.设,则,列等式,求出,则答案可解.
【详解】
,
四边形ABCD为菱形,
,,
即,,
,
.
设 则,
,即,
,
解得(舍去)
.
在轴上,,即轴,则轴,
.
【点睛】
本题考查了菱形的性质及勾股定理,根据菱形的性质结合勾股定理求出、、的长是解题的关键.
2、12
【解析】
【分析】
证出EH是△ABD的中位线,得出BD=2EH=4HN,由题意可以设AN=PC=x,EN=HN=PF=PG=y.构建方程组求出x,y即可解决问题.
【详解】
解:连接BD,如图所示:
∵四边形ABCD是菱形,
∴AB=AD,AC与BD垂直平分,
∵E是AB的中点,H是AD的中点,
∴AE=AH,EH是△ABD的中位线,
∴EN=HN,BD=2EH=4HN,
由题意可以设AN=PC=x,EN=HN=PF=PG=y.
则有,
解得:,
∴AN=2,HN=3,
∴BD=4HN=12;
故答案为:12.
【点睛】
本题考查了菱形的性质,矩形的判定和性质、三角形中位线定理、方程组的解法等知识,解题的关键是学会利用参数构建方程解决问题.
3、5
【解析】
【分析】
由矩形的性质可证△AOB为等边三角形,可求BO=AB的长,即可求BD的长.
【详解】
解:∵四边形ABCD是矩形,
∴AO=CO=BO=DO,
∵∠AOD=120°,
∴∠AOB=60°,且AO=BO,
∴△ABO为等边三角形,
∴AO=BO=AB=2.5,
∴BD=5,
故答案为:5.
【点睛】
本题考查矩形的性质,熟练掌握矩形的性质是本题的关键,①矩形的对边平行且相等;②矩形的四个角都是直角;③矩形的对角线相等且互相平分.
4、6
【解析】
略
5、4
【解析】
【分析】
由勾股定理求出F,得到D,过点作H⊥AB于H,连接BF,则四边形是矩形,求出HE,过点F作FG⊥AB于G,则四边形BCFG是矩形,利用勾股定理求出的长.
【详解】
解:在长方形中,,,
由折叠得5,
∴,
∴13=2,
过点作H⊥AB于H,连接BF,则四边形是矩形,
∴AH=D=2,
∵∠EF=∠BEF,∠FE=∠BEF,
∴∠EF=∠FE,
∴E=F=13,
∴=5,
过点F作FG⊥AB于G,则四边形BCFG是矩形,
∴BG=FC=5,
∴EG=13-5=8,
∴=4
故答案为4.
【点睛】
此题考查了矩形的性质,折叠的性质,勾股定理,正确引出辅助线利用推理论证进行求解是解题的关键.
三、解答题
1、 (1)见解析
(2)见解析
【解析】
【分析】
(1)直接利用线段垂直平分线的作法得出答案;
(2)结合垂直平分线的性质得出△ADE≌△FBE,即可得出AE=EF,进而利用菱形的判定方法得出答案.
(1)
(1)如图:EF即为所求作
(2)
证明:如图,连接DF,
∵AD//BC,
∴∠ADE=∠EBF,
∵AF垂直平分BD,
∴BE=DE.
在△ADE和△FBE中,
,
∴△ADE≌△FBE(ASA),
∴AE=EF,
∴BD与AF互相垂直且平分,
∴四边形ABFD为菱形.
【点睛】
此题主要考查了菱形的判定以及线段垂直平分线的性质与作法,正确应用线段垂直平分线的性质是解题关键.
2、 (1)①见解析;②见解析
(2)是,见解析
(3)
【解析】
【分析】
(1)①根据DE∥AB,得出∠EDC=∠ABM,根据CE∥AM,∠ECD=∠ADB,根据AM是△ABC的中线,且D与M重合,得出BD=DC,再证△ABD≌△EDC(ASA)即可;
②由①得△ABD≌△EDC,得出AB=ED,根据AB∥ED,即可得出结论.
(2)如图,设延长BM交EC于点F,过M作ML∥DC交CF于L,先证四边形MDCL为平行四边形,得出ML=DC=BD,可证△BMD≌△MFL(AAS),再证△ABM≌△EMF(ASA),可证四边形ABME是平行四边形;
(3)过点D作DG∥BN交AC于点G,根据M为AD的中点,DG∥MN,得出MN为三角形中位线MN=DG,根据D为BC的中点,得出DG=BN,可得MN=BN,可求即可.
(1)
证明:①∵DE∥AB,
∴∠EDC=∠ABM,
∵CE∥AM,
∴∠ECD=∠ADB,
∵AM是△ABC的中线,且D与M重合,
∴BD=DC,
在△ABD与△EDC中,
,
∴△ABD≌△EDC(ASA),
即△ABM≌△EMC;
②由①得△ABD≌△EDC,
∴AB=ED,
∵AB∥ED,
∴四边形ABDE是平行四边形;
(2)
成立.理由如下:
如图,设延长BM交EC于点F,过M作ML∥DC交CF于L,
∵AD∥EC,ML∥DC,
∴四边形MDCL为平行四边形,
∴ML=DC=BD,
∵ML∥DC,
∴∠FML=∠MBD,
∵AD∥EC,
∴∠BMD=∠MFL,∠AMB=∠EFM,
在△BMD和△MFL中
∠MBD=∠FML∠BMD=∠MFLBD=ML,
∴△BMD≌△MFL(AAS),
∴BM=MF ,
∵AB∥ME,
∴∠ABM=∠EMF,
在△ABM和△EMF中,
∴△ABM≌△EMF(ASA),
∴AB=EM,
∵AB∥EM,
∴四边形ABME是平行四边形;
(3)
解:过点D作DG∥BN交AC于点G,
∵M为AD的中点,DG∥MN,
∴MN=DG,
∵D为BC的中点,
∴DG=BN,
∴MN=BN,
∴,
由(2)知四边形ABME为平行四边形,
∴BM=AE,
∴.
【点睛】
本题考查三角形中线性质,平行线性质,三角形全等判定与性质,平行四边形判定,三角形中位线性质,掌握三角形中线性质,平行线性质,三角形全等判定与性质,平行四边形判定,三角形中位线性质是解题关键.
3、20条
【解析】
【分析】
多边形的内角和可以表示成(n-2)•180°,外角和是固定的360°,根据正多边形内角和与外角和的差等于720°,列方程求出正多边形的边数.然后根据n边形共有条对角线,得出此正多边形的所有对角线的条数.
【详解】
解:设此正多边形为正n边形.
由题意得:,
解得n=8,
∴此正多边形所有的对角线条数为:=20.
答:这个正多边形的所有对角线有20条.
【点睛】
此题考查多边形的边数与对角线条数,一元一次方程,解题关键在于掌握多边形内角和公式和外角和,以及对角线条数计算公式..
4、见解析
【解析】
【分析】
根据平行四边形的性质可得AB∥CD,AB=CD,根据平行线的性质可得∠BAE=∠CFE,根据中点的定义可得EB=EC,利用AAS可证明△ABE≌△FCE,可得AB=CF,进而可得结论.
【详解】
∵四边形ABCD是平行四边形,
∴AB∥CD,AB=CD,
∴∠BAE=∠CFE;
∵E为BC中点,
∴EB=EC,
在△ABE与△FCE中,
,
∴△ABE≌△FCE(AAS),
∴AB=CF,
∴DC=CF.
【点睛】
本题考查平行四边形的性质及全等三角形的判定与性质,熟练掌握相关性质及判定定理是解题关键.
5、 (1)证明见解析
(2)证明见解析
【解析】
【分析】
(1)先根据平行四边形的性质可得,再根据垂直的定义可得,然后根据三角形全等的判定定理(定理)即可得证;
(2)先根据平行四边形的性质可得,再根据平行线的性质可得,然后根据矩形的判定即可得证.
(1)
证明:四边形是平行四边形,
,
,
,
在和中,,
.
(2)
证明:,
,
四边形是平行四边形,
,
,
在四边形中,,
四边形是矩形.
【点睛】
本题考查了平行四边形的性质、三角形全等的判定定理、矩形的判定等知识点,熟练掌握各判定定理与性质是解题关键.
相关试卷
这是一份数学第二十二章 四边形综合与测试精练,共23页。试卷主要包含了已知锐角∠AOB,如图.等内容,欢迎下载使用。
这是一份初中第二十二章 四边形综合与测试优秀课时训练,共31页。试卷主要包含了如图,已知矩形ABCD中,R等内容,欢迎下载使用。
这是一份2021学年第二十二章 四边形综合与测试精品随堂练习题,共31页。试卷主要包含了六边形对角线的条数共有等内容,欢迎下载使用。