高考数学(文数)一轮课后刷题练习:第9章统计与统计案例 9.3(学生版)
展开
这是一份高考数学(文数)一轮课后刷题练习:第9章统计与统计案例 9.3(学生版),共8页。
[重点保分 两级优选练]A级一、选择题1.四名同学根据各自的样本数据研究变量x,y之间的相关关系,并求得回归直线方程,分别得到以下四个结论:①y与x负相关且=2.347x-6.423;②y与x负相关且=-3.476x+5.648;③y与x正相关且=5.437x+8.493;④y与x正相关且=-4.326x-4.578.其中一定不正确的结论的序号是( )A.①② B.②③ C.③④ D.①④2.对四组数据进行统计,获得如图所示的散点图,关于其相关系数的比较,正确的是( )A.r2<r4<0<r3<r1 B.r4<r2<0<r1<r3C.r4<r2<0<r3<r1 D.r2<r4<0<r1<r33.某考察团对全国10大城市居民人均工资水平x(千元)与居民人均消费水平y(千元)进行统计调查,y与x具有相关关系,回归方程为=0.66x+1.562,若某城市居民人均消费水平为7.675(千元),估计该城市人均消费额占人均工资收入的百分比约为( )A.83% B.72% C.67% D.66%4.下表提供了某厂节能降耗技术改造后在生产A产品过程中记录的产量x(吨)与相应的生产能耗y(吨)的几组对应数据:x3456y2.5t44.5根据上表提供的数据,求出y关于x的线性回归方程为=0.7x+0.35,那么表中t的精确值为 ( )A.3 B.3.15 C.3.5 D.4.55.已知变量x与y正相关,且由观测数据算得样本平均数=3,=3.5,则由该观测数据算得的线性回归方程可能是( )A.=0.4x+2.3 B.=2x-2.4C.=-2x+9.5 D.=-0.3x+4.46.假设有两个分类变量X和Y的2×2列联表如下: YX y1y2总计x1a10a+10x2c30c+30总计6040100对同一样本,以下数据能说明X与Y有关系的可能性最大的一组为( )A.a=45,c=15 B.a=40,c=20C.a=35,c=25 D.a=30,c=307.某工厂为了对新研发的一种产品进行合理定价,将该产品按事先拟定的价格进行试销,得到如下数据:单价x(元)456789销量y(件)908483807568由表中数据,求得线性回归方程为=-4x+a.若在这些样本点中任取一点,则它在回归直线左下方的概率为( )A. B. C. D.8.下列说法错误的是( )A.回归直线过样本点的中心(,)B.两个随机变量的线性相关性越强,则相关系数的绝对值就越接近1C.在回归直线方程=0.2x+0.8中,当解释变量x每增加1个单位时,预报变量平均增加0.2个单位D.对分类变量X与Y,随机变量K2的观测值k越大,则判断“X与Y有关系”的把握程度越小9.已知x与y之间的几组数据如下表:x123456y021334假设根据上表数据所得线性回归直线方程为=x+.若某同学根据上表中的前两组数据(1,0)和(2,2)求得的直线方程为y=b′x+a′,则以下结论正确的是( )A.>b′,>a′ B.>b′,<a′C.<b′,>a′ D.<b′,<a′二、填空题10.x和y的散点图如图所示,则下列说法中所有正确命题的序号为________.①x,y是负相关关系;②在该相关关系中,若用y=c1ec2x拟合时的相关指数为R,用=x+拟合时的相关指数为R,则R>R;③x,y之间不能建立线性回归方程.11.在一组样本数据(x1,y1),(x2,y2),…,(x6,y6)的散点图中,若所有样本点(xi,yi)(i=1,2,…,6)都在曲线y=bx2-附近波动.经计算xi=11,yi=13,x=21,则实数b的值为________. 12.某医疗研究所为了检验某种血清预防感冒的作用,把500名使用血清的人与另外500名未用血清的人一年中的感冒记录作比较,提出假设H0:“这种血清不能起到预防感冒的作用”,利用2×2列联表计算得K2≈3.918,经查对临界值表知P(K2≥3.841)≈0.05.对此,四名同学作出了以下的判断:p:有95%的把握认为“这种血清能起到预防感冒的作用”;q:若某人未使用该血清,则他在一年中有95%的可能性得感冒;r:这种血清预防感冒的有效率为95%;s:这种血清预防感冒的有效率为5%.则下列结论中,正确结论的序号是________.(把你认为正确的命题的序号都填上)①p∧(綈q);②(綈p)∧q;③(綈p∧綈q)∧(r∨s);④(p∨綈r)∧(綈q∨s).B级三、解答题13.已知某企业近3年的前7个月的月利润(单位:百万元)如下面的折线图所示:(1)试问这3年的前7个月中哪个月的月平均利润较高?(2)通过计算判断这3年的前7个月的总利润的发展趋势;(3)试以第3年的前4个月的数据(如下表),用线性回归的拟合模式估计第3年8月份的利润.月份1234利润y(单位:百万元)4466相关公式:==-. 14.海水养殖场进行某水产品的新、旧网箱养殖方法的产量对比,收获时各随机抽取了100个网箱,测量各箱水产品的产量(单位:kg),其频率分布直方图如下:旧养殖法新养殖法(1)记A表示事件“旧养殖法的箱产量低于50 kg”,估计A的概率;(2)填写下面列联表,并根据列联表判断是否有99%的把握认为箱产量与养殖方法有关; 箱产量<50 kg箱产量≥50 kg旧养殖法 新养殖法 (3)根据箱产量的频率分布直方图,对这两种养殖方法的优劣进行比较.K2=.
相关试卷
这是一份高考数学(文数)一轮课后刷题练习:第5章数列 5.1(学生版),共4页。
这是一份高考数学(理数)一轮课后刷题练习:第9章 统计与统计案例9.3(学生版),共9页。
这是一份高考数学(理数)一轮课后刷题练习:第9章 统计与统计案例9.2(学生版),共7页。