高考数学(文数)一轮课后刷题练习:第8章平面解析几何 8.6(学生版)
展开
这是一份高考数学(文数)一轮课后刷题练习:第8章平面解析几何 8.6(学生版),共4页。
[重点保分 两级优选练]A级一、选择题1.“k<9”是“方程+=1表示双曲线”的( )A.充分不必要条件 B.必要不充分条件C.充要条件 D.既不充分也不必要条件2.已知双曲线x2-=1的左、右焦点分别为F1,F2,双曲线的离心率为e,若双曲线上存在一点P使=e,则·的值为( )A.3 B.2 C.-3 D.23.已知双曲线中心在原点且一个焦点为F(,0),直线y=x-1与其相交于M,N两点,MN中点的横坐标为-,则此双曲线的方程是( )A.-=1 B.-=1C.-=1 D.-=14.过双曲线x2-=1的右焦点F作直线l交双曲线于A,B两点,若|AB|=4,则这样的直线l有( )A.1条 B.2条 C.3条 D.4条5.已知椭圆C1:+y2=1(m>1)与双曲线C2:-y2=1(n>0)的焦点重合,e1,e2分别为C1,C2的离心率,则( )A.m>n且e1e2>1 B.m>n且e1e2<1C.m<n且e1e2>1 D.m<n且e1e2<16.已知离心率为的双曲线C:-=1(a>0,b>0)的左、右焦点分别为F1,F2,M是双曲线C的一条渐近线上的点,且OM⊥MF2,O为坐标原点,若S△OMF2=16,则双曲线的实轴长是( )A.32 B.16 C.84 D.47.设双曲线-=1的两条渐近线与直线x=分别交于A,B两点,F为该双曲线的右焦点.若60°<∠AFB<90°,则该双曲线的离心率的取值范围是( )A.(1,) B.(,2)C.(1,2) D.(,+∞)8.已知椭圆C1:+=1(a1>b1>0)与双曲线C2:-=1(a2>0,b2>0)有相同的焦点F1,F2,点P是两曲线的一个公共点,e1,e2分别是两曲线的离心率,若PF1⊥PF2,则4e+e的最小值为( )A. B.4 C. D.99.已知中心在坐标原点的椭圆与双曲线有公共焦点,且左、右焦点分别为F1,F2,这两条曲线在第一象限的交点为P,△PF1F2是以PF1为底边的等腰三角形.若|PF1|=10,记椭圆与双曲线的离心率分别为e1,e2,则e1·e2的取值范围是( )A. B.C. D.(0,+∞)10.已知椭圆C:+=1(a>b>0)的离心率为.双曲线x2-y2=1的渐近线与椭圆C有四个交点,以这四个交点为顶点的四边形的面积为16,则椭圆C的方程为( )A.+=1 B.+=1C.+=1 D.+=1二、填空题11.若点P在曲线C1:-=1上,点Q在曲线C2:(x-5)2+y2=1上,点R在曲线C3:(x+5)2+y2=1上,则|PQ|-|PR|的最大值是________.12.过双曲线-=1(a>0,b>0)的左焦点F(-c,0)(c>0),作圆x2+y2=的切线,切点为E,延长FE交曲线右支于点P,若=(+),则双曲线的离心率为________.13.已知l是双曲线C:-=1的一条渐近线,P是l上的一点,F1,F2是C的两个焦点,若·=0,则P到x轴的距离为________.14.我们把焦点相同,且离心率互为倒数的椭圆和双曲线称为一对“相关曲线”.已知F1,F2是一对相关曲线的焦点,P是它们在第一象限的交点,当∠F1PF2=60°时,这一对相关曲线中双曲线的离心率是________. B级三、解答题15.已知点M(-2,0),N(2,0),动点P满足条件|PM|-|PN|=2,记动点P的轨迹为W.(1)求W的方程;(2)若A和B是W上的不同两点,O是坐标原点,求·的最小值. 16.已知双曲线C:x2-y2=1及直线l:y=kx-1.(1)若l与C有两个不同的交点,求实数k的取值范围;(2)若l与C交于A,B两点,O是坐标原点,且△AOB的面积为,求实数k的值.
相关试卷
这是一份高考数学(文数)一轮课后刷题练习:第8章平面解析几何 8.3(学生版),共4页。
这是一份高考数学(文数)一轮课后刷题练习:第8章平面解析几何 8.6(教师版)
这是一份高考数学(理数)一轮课后刷题练习:第8章 平面解析几何8.6(学生版),共4页。