初中数学人教版七年级下册5.3.1 平行线的性质巩固练习
展开
这是一份初中数学人教版七年级下册5.3.1 平行线的性质巩固练习,共21页。试卷主要包含了选择题.,填空题.,解答题.等内容,欢迎下载使用。
5.3 平行线的性质
一、选择题.
1.如图,已知AD⊥BC,FG⊥BC,∠BAC=90°,DE∥AC.则结论:①FG∥AD;②DE平分ADB;③∠B=∠ADE;④∠CFG+∠BDE=90°.正确的是( )
A.①②③ B.①②④ C.①③④ D.②③④
【解答】解:∵AD⊥BC,FG⊥BC,
∴∠FGD=∠ADB=90°,
∴FG∥AD,
故①正确;
∵DE∥AC,∠BAC=90°,
∴DE⊥AB,
不能证明DE为∠ADB的平分线,
故②错误;
∵AD⊥BC,
∴∠B+∠BAD=90°,
∵DE⊥AB,
∴∠BAD+∠ADE=90°,
∴∠B=∠ADE,
故③正确;
∵∠BAC=90°,DE⊥AB,
∴∠CFG+∠C=90°,∠BDE+∠B=90°,∠C+∠B=90°,
∴∠CFG+∠BDE=90°,
故④正确,
综上所述,正确的选项①③④,
故选:C.
2.如图,若AD∥BC,则下列结论正确的是( )
A.∠1=∠3 B.∠2=∠4 C.∠1=∠2 D.∠2=∠3
【解答】解:∵AD∥BC,
∴∠3=∠1,
故选:A.
3.下列各图形中均有直线m∥n,则能使结论∠A=∠1﹣∠2成立的是( )
A. B.
C. D.
【解答】解:A、∵m∥n,
∴∠2=∠1+∠A,
∴∠A=∠2﹣∠1,不符合题意;
B、∵m∥n,
∴∠1=∠2+∠A,
∴∠A=∠1﹣∠2,符合题意;
C、∵m∥n,
∴∠1+∠2+∠A=360°,
∴∠A=360°﹣∠2﹣∠1,不符合题意;
D、∵m∥n,
∴∠A=∠1+∠2,不符合题意;
故选:B.
4.如图,a∥b,∠ABD的平分线交直线a于点C,CE⊥直线c于点E,∠1=24°,则∠2的大小为( )
A.114° B.142° C.147° D.156°
【解答】解:∵∠1=24°,CE⊥直线c于点E,
∴∠EAC=90°﹣∠1=90°﹣24°=66°,
∵a∥b,
∴∠EAC=∠ABD=66°,
∵∠ABD的平分线交直线a于点C,
∴∠CBD=12∠ABD=12×66°=33°,
∴∠2=180°﹣∠CBD=180°﹣33°=147°,
故选:C.
5.如图,AB∥DE,BC⊥CD,则以下说法中正确的是( )
A.α,β的角度数之和为定值
B.α,β的角度数之积为定值
C.β随α增大而增大
D.β随α增大而减小
【解答】解:过C点作CF∥AB,
∵AB∥DE,
∴CF∥DE,
∴∠α=∠BCF,∠β+∠DCF=180°,
∵BC⊥CD,
∴∠BCF+∠DCF=90°,
∴∠α+180°﹣∠β=90°,
∴∠β﹣∠α=90°,
∴β随α增大而减小,
故选:D.
6.如图,正六边形A1A2A3A4A5A6内部有一个正五边形B1B2B3B4B5,且A3A4∥B3B4,直线l经过点B2,B3.则下列结论错误的是( )
A.∠A1A2A3=120°
B.∠A2A3A4=120°
C.∠B2B3B4=108°
D.直线l与A1A2的夹角α=50°
【解答】解:设l交A1A2于E、交A4A3于D,如图所示:
∵六边形A1A2A3A4A5A6是正六边形,六边形的内角和=(6﹣2)×180°=720°,
∴∠A1A2A3=∠A2A3A4=720°6=120°,故A、B正确,
∵五边形B1B2B3B4B5是正五边形,五边形的内角和=(5﹣2)×180°=540°,
∴∠B2B3B4=5405=108°,故C正确,
∴∠B4B3D=180°﹣108°=72°,
∵A3A4∥B3B4,
∴∠EDA3=∠B4B3D=72°,
∴α=∠A2ED=360°﹣∠A1A2A3﹣∠A2A3A4﹣∠EDA3=360°﹣120°﹣120°﹣72°=48°,故D错误;
故选:D.
7.如图,将长方形ABCD沿线段EF折叠到EB'C'F的位置,若∠EFC'=100°,则∠DFC'的度数为( )
A.20° B.30° C.40° D.50°
【解答】解:由翻折知,∠EFC=∠EFC'=100°,
∴∠EFC+∠EFC'=200°,
∴∠DFC'=∠EFC+∠EFC'﹣180°=200°﹣180°=20°,
故选:A.
8.如图,已知直线AB,CD被直线AC所截,AB∥CD,E是平面内任意一点(点E不在直线AB,CD,AC上),设∠BAE=α,∠DCE=β.下列各式:①α+β,②α﹣β,③180°﹣α﹣β,④360°﹣α﹣β,∠AEC的度数可能是( )
A.①②③ B.①②④ C.①③④ D.①②③④
【解答】解:(1)如图1,由AB∥CD,可得∠AOC=∠DCE1=β,
∵∠AOC=∠BAE1+∠AE1C,
∴∠AE1C=β﹣α.
(2)如图2,过E2作AB平行线,则由AB∥CD,可得∠1=∠BAE2=α,∠2=∠DCE2=β,
∴∠AE2C=α+β.
(3)如图3,由AB∥CD,可得∠BOE3=∠DCE3=β,
∵∠BAE3=∠BOE3+∠AE3C,
∴∠AE3C=α﹣β.
(4)如图4,由AB∥CD,可得∠BAE4+∠AE4C+∠DCE4=360°,
∴∠AE4C=360°﹣α﹣β.
(5)(6)当点E在CD的下方时,同理可得,∠AEC=α﹣β或β﹣α.
综上所述,∠AEC的度数可能为β﹣α,α+β,α﹣β,360°﹣α﹣β.
故选:B.
二、填空题.
9.如图,已知AB∥CD,AD平分∠BAC,∠1=70°,则∠ADC的度数是 55° .
【解答】解:∵AB∥CD,
∴∠1+∠BAC=180°,
∴∠BAC=180°﹣∠1=180°﹣70°=110°.
∵AD平分∠BAC,
∴∠BAD=12∠BAC=12×110°=55°.
∵AB∥CD,
∴∠ADC=∠BAD=55°.
故答案为:55°.
10.如图,三角形ABC中,D是AB上一点,F是BC上一点,E,H是AC上的点,EF的延长线交AB的延长线于点G,连接DE,DH,DE∥BC.若∠CEF=∠CHD,∠EFC=∠ADH,∠CEF:∠EFC=5:2,∠C=47°,则∠ADE的度数为 76° .
【解答】解:∵∠CEF=∠CHD,
∴DH∥GE,
∴∠ADH=∠G,
∵∠EFC=∠ADH,
∵∠BFG=∠EFC,
∴∠G=∠BFG,
∴∠ABC=∠G+∠BFG=2∠EFC,
∵∠CEF:∠EFC=5:2,∠C=47°,
∴∠EFC=38°,
∴∠ABC=76°,
∵DE∥BC,
∴∠ADE=∠ABC=76°,
故答案为:76°.
11.如图,直线l1∥l2,点A在l1上,以点A为圆心,适当长为半径画弧,分别交直线l1,l2于B,C两点;连接AC,BC.若∠ABC=55°,则∠1的大小为 70° .
【解答】解:∵AC=AB,
∴∠ACB=∠ABC=55°,
根据三角形的内角和定理得:∠ACB+∠ABC+∠CAB=180°,
∴∠CAB=180°﹣∠ACB﹣∠ABC=180°﹣55°﹣55°=70°,
∵l1∥l2,
∴∠1=∠CAB=70°,
故答案为:70°.
12.如图,OP∥QR∥ST,若∠2=100°,∠3=120°,则∠1= 40° .
【解答】解:∵OP∥QR∥ST,∠2=100°,∠3=120°,
∴∠2+∠PRQ=180°,∠3=∠SRQ=120°,
∴∠PRQ=180°﹣100°=80°,
∴∠1=∠SRQ﹣∠PRQ=40°,
故答案是40°.
13.如图,把一把直尺放在含30度角的直角三角板上,量得∠1=56°,则∠2的度数是 116° .
【解答】解:
∵把一把直尺放在含30度角的直角三角板上,
∴a∥b,
∴∠1=∠3=56°,
∴∠4=180°﹣∠3=180°﹣56°=124°,
∴∠5=360°﹣∠4﹣90°﹣30°=360°﹣124°﹣90°﹣30°=116°,
∴∠2=∠5=116°,
故答案为:116°.
14.如图,直线AB、CD被直线EF所截,AB∥CD,DG⊥BF于点G,若∠1=130°,则∠2的度数为 40° .
【解答】解:∵AB∥CD,∠1=130°,
∴∠CFB=∠1=130°,
∴∠BFD=180°﹣∠CFB=180°﹣130°=50°,
∵DG⊥BF,
∴∠DGF=90°,
∴∠2=90°﹣∠BFD=90°﹣50°=40°,
故答案为40°.
15.如图,已知AD∥BC,BD 平分∠ABC,∠A=112°,且BD⊥CD,则∠ADC= 124° .
【解答】解:∵AD∥BC,∠A=112°,
∴∠ABC=180°﹣∠A=68°,
∵BD 平分∠ABC,
∴∠CBD=12∠ABC=34°,
∵BD⊥CD,
∴∠C=90°﹣∠CBD=56°,
∴∠ADC=180°﹣∠C=124°.
故答案为:124°.
16.如图,已如长方形纸片ABCD,O是BC边上一点,P为CD中点,沿AO折叠使得顶点B落在CD边上的点P处,则∠OAB的度数是 30° .
【解答】解:由折叠得,∠BAO=∠OAP,AB=AP,
∵长方形纸片ABCD,
∴AB=CD,∠D=∠DAB=∠B=90°,
∵P为CD中点,
∴PC=PD=12CD=12AP,
在Rt△ADP中,∠DAP=30°,
∴∠OAB=∠OAP=12(90°﹣30°)=30°,
故答案为:30°.
17.如图,AB∥CD,CF平分∠DCG,GE平分∠CGB交FC的延长线于点E,若∠E=34°,则∠B的度数为 68° .
【解答】解:如图,延长DC交BG于M.由题意可以假设∠DCF=∠GCF=x,∠CGE=∠MGE=y.
则有2x=2y+∠GMC①x=y+∠E②,
①﹣②×2可得:∠GMC=2∠E,
∵∠E=34°,
∴∠GMC=68°,
∵AB∥CD,
∴∠GMC=∠B=68°,
故答案为68°.
三、解答题.
18.如图,已知AB∥CD,E是直线AB上的一点,CE平分∠ACD,射线CF⊥CE,∠1=32°,
(1)求∠ACE的度数;
(2)若∠2=58°,求证:CF∥AG.
【解答】解:(1)∵AB∥CD,
∴∠1=∠DCE=32°,
∵CE平分∠ACD,
∴∠ACE=∠DCE=32°;
(2)∵CF⊥CE,
∴∠FCE=90°,
∴∠FCH=90°﹣32°=58°,
∵∠2=58°,
∴∠FCH=∠2,
∴CF∥AG.
19.如图,在△ABC的三边上有D,E,F三点,点G在线段DF上,∠1与∠2互补,∠3=∠C.
(1)若∠C=40°,求∠BFD的度数;
(2)判断DE与BC的位置关系,并说明理由.
【解答】解:(1)∵∠1与∠2互补,
∴AC∥DF,
∴∠BFD=∠C=40°;
(2)DE∥BC,理由如下:
由(1)可知:∠BFD=∠C,
∵∠C=∠3,
∴∠BFD=∠3,
∴DE∥BC.
20.如图,MN,EF分别表示两面镜面,一束光线AB照射到镜面MN上,反射光线为BC,此时∠1=∠2;光线BC经过镜面EF反射后的反射光线为CD,此时∠3=∠4,且AB∥CD.求证:MN∥EF.
【解答】证明:∵AB∥CD,
∴∠ABC=∠BCD,
∵∠1+∠ABC+∠2=∠3+∠BCD+∠4=180°,
∴∠1+∠2=∠3+∠4,
又∵∠1=∠2,∠3=∠4,
∴∠2=∠3,
∴MN∥EF.
21.如图1是长方形纸带,将长方形ABCD沿EF折叠成图2,使点C、D分别落在点C1、D1处,再沿BF折叠成图3,使点C1、D1分别落在点C2、D2处.
(1)若∠DEF=20°,求图1中∠CFE的度数;
(2)在(1)的条件下,求图2中∠C1FC的度数;
(3)在图3中写出∠C2FE、∠EGF与∠DEF的数量关系,并说明理由.
【解答】解:(1)∵长方形ABCD,
∴AD∥BC,
∴∠DEF+∠CFE=180°
∵∠DEF=20°,
∴∠CFE=180°﹣∠DEF=180°﹣20°=160°;
(2)∵四边形EDCF折叠得到四边形ED1C1F,
∴∠D1EF=∠DEF=20°,
∴∠DEG=∠DEF+∠D1EF=20°+20°=40°,
∵长方形ABCD,
∴AD∥BC,
∴∠CGD1=∠DEG=40°
∵FC1∥ED1,
∴∠C1FC=∠CGD1=40°;
(3)∠C2FE+∠DEF=∠EGF,
理由如下:∵长方形ABCD,
∴AD∥BC,
∴∠EFB=∠DEF,∠DEF+∠CFE=180°,∠DEG+∠EGF=180°,
设∠DEF=x°,
∴∠EFB=x°,∠CFE=180°﹣∠DEF=180°﹣x°,
∵四边形EDCF折叠得到四边形ED1C1F,
∴∠D1EF=∠DEF=x°,
∴∠DEG=∠DEF+∠D1EF=2x°,
∴∠EGF=180°﹣∠DEG=180°﹣2x°,
∵FC1∥ED1,
∴∠C1FG=∠EGF=180°﹣2x°,
∵四边形GD1C1F折叠得到四边形GD2C2F,
∴∠C2FG=∠C1FG=180°﹣2x°,∠C2FE=∠C2FG﹣∠EFB=180°﹣2x°﹣x°=180°﹣3x°,
∴∠C2FE+∠DEF=180°﹣3x°+x°=180°﹣2x°=∠EGF.
22.已知:直线GH分别与直线AB,CD交于点E,F.EM平分∠BEF,FN平分∠CFE,并且EM∥FN.
(1)如图1,求证:AB∥CD;
(2)如图2,∠AEF=2∠CFN,在不添加任何辅助线的情况下,请直接写出图2中四个角,使写出的每个角的度数都为135°.
【解答】(1)证明:∵EM∥FN,
∴∠EFN=∠FEM.
∵EM平分∠BEF,FN平分∠CFE,
∴∠CFE=2∠EFN,∠BEF=2∠FEM.
∴∠CFE=∠BEF.
∴AB∥CD.
(2)∠AEM,∠GEM,∠DFN,∠HFN度数都为135°.理由如下:
∵AB∥CD,
∴∠AEF+∠CFE=180°,
∵FN平分∠CFE,
∴∠CFE=2∠CFN,
∵∠AEF=2∠CFN,
∴∠AEF=∠CFE=90°,
∴∠CFN=∠EFN=45°,
∴∠DFN=∠HFN=180°﹣45°=135°,
同理:∠AEM=∠GEM=135°.
∴∠AEM,∠GEM,∠DFN,∠HFN度数都为135°.
23.如图,直线AB∥CD,AE平分∠CAB交CD于点E,若∠C=50°,求∠AED的度数.
【解答】解:∵AB∥CD,
∴∠BAE+∠AED=180°,∠BAC+∠C=180°,
∵∠C=50°,
∴∠BAC=130°,
∵AE平分∠BAC,
∴∠BAE=12∠BAC=65°,
∴∠AED=180°﹣∠BAE=115°.
24.[感知]如图①,AB∥CD,∠AEP=40°,∠PFD=130°,求∠EPF的度数.小明想到了以下方法:
解;(1)如图①,过点P作PM∥AB,
∴∠1=∠AEP=40°(两直线平行,内错角相等)
∵AB∥CD(已知),
∴PM∥CD(平行于同一条直线的两直线平行),
∴∠2+∠PFD=180°(两直线平行,同旁内角互补).
∵∠PFD=130°(已知),
∴∠2=180°﹣130°=50°(等式的性质),
∴∠1+∠2=40°+50°=90°(等式的性质).
即∠EPF=90°(等量代换).
[探究]如图②,AB∥CD,∠AEP=50°,∠PFC=120°,求∠EPF的度数.
[应用]如图③所示,在[探究]的条件下,∠PEA的平分线和∠PFC的平分线交于点G,则∠G的度数是 35 °.
【解答】[探究]如图②,过点P作PM∥AB,
∴∠MPE=∠AEP=50°(两直线平行,内错角相等)
∵AB∥CD(已知),
∴PM∥CD(平行于同一条直线的两直线平行),
∴∠PFC=∠MPF=120°(两直线平行,内错角相等).
∴∠EPF=∠MPF﹣MPE=120°50°=70°(等式的性质).
答:∠EPF的度数为70°;
[应用]如图③所示,
∵EG是∠PEA的平分线,PG是∠PFC的平分线,
∴∠AEG=12∠AEP=25°,∠GCF=12∠PFC=60°,
过点G作GM∥AB,
∴∠MGE=∠AEG=25°(两直线平行,内错角相等)
∵AB∥CD(已知),
∴GM∥CD(平行于同一条直线的两直线平行),
∴∠GFC=∠MGF=60°(两直线平行,内错角相等).
∴∠G=∠MGF﹣MGE=60°﹣25°=35°.
答:∠G的度数是35°.
故答案为:35.
25.如图①,直线l1∥l2,直线EF和直线l1、l2分别交于C、D两点,点A、B分别在直线l1、l2上,点P在直线EF上,连结PA、PB.
猜想:如图①,若点P在线段CD上,∠PAC=15°,∠PBD=40°,则∠APB的大小为 55 度.
探究:如图①,若点P在线段CD上,直接写出∠PAC、∠APB、∠PBD之间的数量关系.
拓展:如图②,若点P在射线CE上或在射线DF上时,直接写出∠PAC、∠APB、∠PBD之间的数量关系.
【解答】解:猜想:如图①,过点P作PG∥l1,
∵l1∥l2,
∴l1∥l2∥PG,
∴∠APG=∠PAC=15°,∠BPG=∠PBD=40°,
∴∠APB=∠APG+∠BPG=∠PAC+∠PBD=15°+40°=55°,
∴∠APB的大小为55度,
故答案为:55;
探究:如图①,∠PAC=∠APB﹣∠PBD,理由如下:
∵l1∥l2∥PG,
∴∠APG=∠PAC,∠BPG=∠PBD,
∴∠APB=∠APG+∠BPG=∠PAC+∠PBD,
∴∠PAC=∠APB﹣∠PBD;
拓展:∠PAC=∠PBD﹣∠APB或∠PAC=∠APB+∠PBD,理由如下:
如图,当点P在射线CE上时,
过点P作PG∥l1,
∴l1∥l2∥PG,
∴∠APG=∠PAC,∠BPG=∠PBD,
∴∠PAC=∠APG=∠BPG﹣∠APB,
∴∠PAC=∠PBD﹣∠APB;
当点P在射线DF上时,
过点P作PG∥l1,
∴l1∥l2∥PG,
∴∠APG=∠PAC,∠BPG=∠PBD,
∴∠PAC=∠APG=∠APB+∠BPG,
∴∠PAC=∠APB+∠PBD,
综上所述:当点P在射线CE上或在射线DF上时,∠PAC=∠PBD﹣∠APB或∠PAC=∠APB+∠PBD.
26.已知点A在射线CE上,∠BDA=∠C.
(1)如图1,若AC∥BD,求证:AD∥BC;
(2)如图2,若∠BAC=∠BAD,BD⊥BC,请证明∠DAE+2∠C=90°;
(3)如图3,在(2)的条件下,过点D作DF∥BC交射线CE于点F,当∠DFE=8∠DAE时,求∠BAD的度数.(直接写出结果)
【解答】(1)证明:∵AC∥BD,
∴∠DAE=∠BDA,
∵∠BDA=∠C,
∴∠DAE=∠C,
∴AD∥BC;
(2)证明:如图2,设CE与BD相交于点G,∠BGA=∠BDA+DAE,
∵BD⊥BC,
∴∠BGA+∠C=90°,
∴∠BDA+∠DAE+∠C=90°,
∵∠BDA=∠C,
∴∠DAE+2∠C=90°;
(3)如图3,设∠DAE=α,则∠DFE=8α,
∵∠DFE+∠AFD=180°,
∴∠AFD=180°﹣8α,
∵DF∥BC,
∴∠C=∠AFD=180°﹣8α,
又∵2∠C+∠DAE=90°,
∴2(180°﹣8α)+α=90°,
∴α=18°,
∴∠C=180°﹣8α=36°=∠ADB,
又∵∠C=∠BDA,∠BAC=∠BAD,
∴∠ABC=∠ABD=12∠CBD=45°,
△ABD中,∠BAD=180°﹣45°﹣36°=99°.
答:∠BAD的度数是99°.
相关试卷
这是一份人教版七年级下册5.3.1 平行线的性质随堂练习题,共6页。试卷主要包含了3 平行线的性质 同步训练等内容,欢迎下载使用。
这是一份初中数学人教版七年级下册10.2 直方图课后测评,共17页。试卷主要包含了选择题.,填空题.,解答题.等内容,欢迎下载使用。
这是一份2021学年5.3.1 平行线的性质复习练习题,共16页。试卷主要包含了选择题.,填空题.,解答题.等内容,欢迎下载使用。