开学活动
搜索
    上传资料 赚现金

    2022高考数学一轮复习专题28 函数的零点的问题(解析卷)

    2022高考数学一轮复习专题28 函数的零点的问题(解析卷)第1页
    2022高考数学一轮复习专题28 函数的零点的问题(解析卷)第2页
    2022高考数学一轮复习专题28 函数的零点的问题(解析卷)第3页
    还剩6页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2022高考数学一轮复习专题28 函数的零点的问题(解析卷)

    展开

    这是一份2022高考数学一轮复习专题28 函数的零点的问题(解析卷),共9页。试卷主要包含了题型选讲, 函数零点问题中参数的范围等内容,欢迎下载使用。
    专题28  函数的零点的问题 一、题型选讲题型一 函数零点个数判断与证明可将零点个数问题转化成方程,进而通过构造函数将方程转化为两个图像交点问题,并作出函数图像。作图与根分布综合的题目,其中作图是通过分析函数的单调性和关键点来进行作图,在作图的过程中还要注意渐近线的细节,从而保证图像的准确。例1、(2019苏州三市、苏北四市二调)定义在R上的奇函数f(x)满足f(x+4)=f(x),且在区间[2,4)上则函数的零点的个数为        【答案】 5 【解析】:因为f(x+4)=f(x),可得f(x)是周期为4的奇函数,先画出数f(x)在区间[2,4)上的图像,根据奇函数和周期为4,可以画出f(x)在R上的图像,由yf(x)-log5| x|=0,得f(x)=log5| x|,分别画出yf(x)和y=log5|x|的图像,如下图,由f(5)=f(1)=1,而log55=1,f(-3)=f(1)=1,log5|-3|<1,而f(-7)=f(1)=1,而log5|-7|=log57>1,可以得到两个图像有5个交点,所以零点的个数为5. 变式1、【2019年高考全国Ⅱ卷理数】已知函数.1)讨论f(x)的单调性,并证明f(x)有且仅有两个零点;【解析】1fx)的定义域为(011+∞).因为,所以在(01),(1+∞)单调递增.因为fe=,所以fx)在(1+∞)有唯一零点x1,即fx1=0.又,故fx)在(01)有唯一零点综上,fx)有且仅有两个零点. 变式22020年高考浙江】已知,函数,其中e=2.71828…是自然对数的底数证明:函数上有唯一零点;【解析】()因为,所以上存在零点因为,所以当时,,故函数上单调递增,所以函数以上有唯一零点 题型二、 函数零点问题中参数的范围已知函数零点的个数,确定参数的取值范围,常用的方法和思路:(1) 直接法:直接根据题设条件构建关于参数的不等式,再通过解不等式确定参数范围.(2) 分离参数法:先将参数分离,转化成求函数值域问题加以解决,解法2就是此法.它的本质就是将函数转化为一个静函数与一个动函数的图像的交点问题来加以处理,这样就可以通过这种动静结合来方便地研究问题.(3) 数形结合法:先对解析式变形,在同一平面直角坐标系中,画出函数的图像,然后数形结合求解. 2、【2019年高考浙江】已知,函数.若函数恰有3个零点,则Aa<–1b<0   Ba<–1b>0   Ca>–1b<0   Da>–1b>0 【答案】C解析】当x0时,yfxaxbxaxb=(1﹣axb0,得xyfxaxb最多一个零点;x≥0时,yfxaxbx3a+1x2+axaxbx3a+1x2b,当a+1≤0,即a≤﹣1时,y′≥0yfxaxb[0+∞)上单调递增,yfxaxb最多一个零点不合题意;a+10,即a>﹣1时,令y0x(a+1+∞),此时函数单调递增,y0x[0a+1),此时函数单调递减,则函数最多有2个零点.根据题意函数yfxaxb恰有3个零点函数yfxaxb在(﹣∞0)上有一个零点,在[0+∞)上有2个零点,如图:0解得b01﹣a0ba+13,则a>–1b<0.故选C变式1、【2018年高考全国Ⅱ卷理数】已知函数.若只有一个零点,求【解析】设函数只有一个零点当且仅当只有一个零点i)当时,没有零点;ii)当时,时,;当时,所以单调递减,在单调递增的最小值①若,即没有零点;②若,即只有一个零点;③若,即,由于,所以有一个零点,由(1)知,当时,,所以有一个零点,因此有两个零点综上,只有一个零点时,变式2(2020届山东省潍坊市高三上学期统考)函数若函数只有一个零点,则可能取的值有(    A2 B C0 D1【答案】ABC【解析】只有一个零点,
    函数与函数有一个交点,
    作函数函数与函数的图象如下, 
    结合图象可知,当时;函数与函数有一个交点;
    时,,可得,令可得,所以函数在时,直线与相切,可得.综合得:.
    故选:ABC.变式32020届山东省滨州市三校高三上学期联考)已知函数e为自然对数的底),若有四个零点,则实数m的取值可以为(    A1 Be C2e D3e【答案】CD【解析】因为,可得,即为偶函数,由题意可得时,有两个零点,时,时,,可得相切,设切点为的导数为,可得切线的斜率为可得切线的方程为由切线经过点,可得解得:(舍去),即有切线的斜率为故选:CD. 二、达标训练12020·山东省淄博实验中学高三上期末)已知函数.若函数上无零点,则的最小值为________.【答案】【解析】因为在区间上恒成立不可能,故要使函数上无零点,只要对任意的恒成立,即对任意的恒成立.,则再令,则上为减函数,于是从而,于是上为增函数,所以故要使恒成立,只要综上,若函数上无零点,则的最小值为.故答案为:22020届浙江省台州市温岭中学3月模拟)已知函数在区间上有零点,则的取值范围是(    A B C D【答案】B【解析】不妨设为函数的两个零点,其中.,所以可令恒成立,所以.的最大值为,此时还应满足,显然时,.故选:B.32020届浙江省嘉兴市3月模拟)已知函数,若存在实数使上有2个零点,则的取值范围为________【答案】【解析】已知实数使上有2个零点,等价于的函数图象在上有2个交点,显然x轴的交点为的图象关于对称,时,若要有2个交点,由数形结合知m一定小于e,即时,若要有2个交点,须存在a使得有两解,所以因为,即,显然存在这样的a使上述不等式成立;由数形结合知m须大于处的切线x轴交点的横坐标,即综上所述,m的范围为故答案为:42020届山东省德州市高三上期末)已知函数为常为正整数,函数恰好有两个零点,求的值.【解析】因为为正整数,,则由(2)知单调递增,在单调递减,,所以在区间内仅有实根,,所以在区间内仅有实根.此时,在区间内恰有实根;单调递增,至多有实根.,则所以.由(2)知单调递减,在单调递增,所以,所以至多有实根.综上,.

    相关试卷

    高考数学一轮复习讲义微专题10函数零点的个数问题(含详解):

    这是一份高考数学一轮复习讲义微专题10函数零点的个数问题(含详解),共18页。试卷主要包含了知识点讲解与分析,方法与技巧,例题精析等内容,欢迎下载使用。

    专题30:函数的零点、隐零点问题-2023届高考数学一轮复习精讲精练(新高考专用):

    这是一份专题30:函数的零点、隐零点问题-2023届高考数学一轮复习精讲精练(新高考专用),文件包含专题30函数的零点隐零点问题-2023届高考数学一轮复习精讲精练新高考专用解析版docx、专题30函数的零点隐零点问题-2023届高考数学一轮复习精讲精练新高考专用原卷版docx等2份试卷配套教学资源,其中试卷共34页, 欢迎下载使用。

    2022高考数学第一轮复习专题10函数零点问题(无答案):

    这是一份2022高考数学第一轮复习专题10函数零点问题(无答案),共8页。

    英语朗读宝
    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map