高考数学(理数)一轮复习练习题:4.3《平面向量的数量积及平面向量的应用》(教师版)
展开
这是一份高考数学(理数)一轮复习练习题:4.3《平面向量的数量积及平面向量的应用》(教师版),共5页。
www.ks5u.com第3节 平面向量的数量积及平面向量的应用【选题明细表】知识点、方法题号平面向量的数量积1,2,8,9,11平面向量的夹角与垂直4,5,6,7,13平面向量的模3,10,14平面向量的综合应用12,15基础巩固(时间:30分钟)1.已知向量a,b满足|a|=1,a·b=-1,则a·(2a-b)等于( B )(A)4 (B)3 (C)2 (D)0解析:a·(2a-b)=2a2-a·b=2|a|2-a·b.因为|a|=1,a·b=-1,所以原式=2×12+1=3.故选B.2.已知|a|=6,|b|=3,a·b=-12,则向量a在向量b方向上的投影是( A )(A)-4 (B)4 (C)-2 (D)2解析:因为a·b=|a||b|cos<a,b>=18cos<a,b>=-12,所以cos<a,b>=-.所以a在b方向上的投影是|a|cos<a,b>=-4.3.a=(2,1),a·b=10,|a+b|=5,则|b|等于( C )(A) (B) (C)5 (D)25解析:因为a=(2,1),所以a=,因为a·b=10,|a+b|=5,所以|a+b|2=(5)2,即|a|2+|b|2+2a·b=50,所以|b|2=25,所以|b|=5,故选C.4.已知向量=(1,1),=(2,3),则下列向量与垂直的是( D )(A)a=(3,6) (B)b=(8,-6) (C)c=(6,8) (D)d=(-6,3)解析:因为=(1,1),=(2,3),所以=(1,2).由于·d=(1,2)·(-6,3)=0,故⊥d.故选D.5.已知向量a=(x2,x+2),b=(-,-1),c=(1,),若a∥b,则a与c的夹角为( A )(A) (B) (C) (D)解析:因为a∥b,所以=,所以x2=(x+2),cos<a,c>=====,又<a,c>∈[0,π],所以<a,c>=,故选A.6.设向量a=(1,m),b=(m-1,2),且a≠b.若(a-b)⊥a,则实数m的值为( C )(A) (B)1或2 (C)1 (D)2解析:因为(a-b)⊥a,所以(a-b)·a=0,即a2-b·a=0,1+m2-(m-1+2m)=0,m2-3m+2=0.解得m=2或m=1.当m=1时,a=(1,1),b=(0,2),满足a≠b;当m=2时,a=(1,2),b=(1,2),不满足a≠b,故舍去.综上,m=1.故选C.7.若向量a,b的夹角为,且|a|=2,|b|=1,则a与a+2b的夹角为( A )(A) (B) (C) (D)解析:因为向量a,b的夹角为,且|a|=2,|b|=1,所以a·b=2×1×cos =1,|a+2b|===2,所以cos<a,a+2b>====,因为<a,a+2b>∈[0,π],所以<a,a+2b>=.8.)已知a=(-1,),b=(0,2),则向量a在向量b方向上的投影为 . 解析:因为a·b=-1×0+×2=2,|b|=2,所以向量a在向量b方向上的投影为|a|·cos<a,b>===.答案: 9.一质点受到平面上的三个力F1,F2,F3(单位:牛顿)的作用而处于平衡状态.已知F1,F2成60°角,且F1,F2的大小分别为2和4,则F3的大小为 . 解析:由题意知F3=-(F1+F2),所以|F3|=|F1+F2|,所以|F3|2=|F1|2+|F2|2+2|F1||F2|cos 60°=28,所以|F3|=2.答案:2能力提升(时间:15分钟)10.已知向量a,b满足|a-b|=3且b=(0,-1),若向量a在向量b方向上的投影为-2,则|a|等于( A )(A)2 (B)2 (C)4 (D)12解析:由|a-b|=3,得|a-b|2=(a-b)2=a2-2a·b+b2=9,所以a·b===,由向量a在向量b方向上的投影为-2,则==-2,即|a|2=4,所以|a|=2.故选A.11.如图,BC,DE是半径为1的圆O的两条直径,=2,则·等于( B )(A)- (B)- (C)- (D)-解析:因为=2,圆O的半径为1,所以||=,所以·=(+)·(+)=||2+·(OE+)+·=()2+0-1=-.故选B.12.已知点M是边长为2的正方形ABCD的内切圆内(含边界)一动点,则·的取值范围是( C )(A)[-1,0] (B)[-1,2] (C)[-1,3] (D)[-1,4]解析: 设M(x,y),如图,建立平面直角坐标系,由题意,点M所在的轨迹为(x-1)2+(y-1)2≤1(0≤x≤2,0≤y≤2),设M(x,y),又A(0,0),B(2,0),所以·=(-x,-y)·(2-x,-y)=-x(2-x)+y2=(x-1)2+y2-1,因为∈[0,2],所以(x-1)2+y2∈[0,4],所以(x-1)2+y2-1∈[-1,3],即·∈[-1,3].故选C.13.已知单位向量e1与e2的夹角为α,且cos α=,向量a=3e1-2e2与b=3e1-e2的夹角为β,则cos β= . 解析:a·b=(3e1-2e2)·(3e1-e2)=9+2-9×1×1×=8.因为|a|2=(3e1-2e2)2=9+4-12×1×1×=9,所以|a|=3.因为|b|2=(3e1-e2)2=9+1-6×1×1×=8,所以|b|=2,所以cos β===.答案:14.在△ABC中,(-3)⊥,则角A的最大值为 . 解析:设△ABC中,角A,B,C所对应的边分别为a,b,c由已知得(-3)·=(-3)·(-)=+3-4·=0,所以cos A==≥=,则角A的最大值为.答案:15.在平行四边形ABCD中,AD=1,∠BAD=60°,E为CD的中点.若·=1,则AB= . 解析:在平行四边形ABCD中,取AB的中点F,则=,所以==-,又因为=+,所以·=(+)·(-)=-·+·-=||2+||||cos 60°-||2=1+×||-||2=1.所以(-||)||=0,又||≠0,所以||=,即AB=.答案:
相关试卷
这是一份(通用版)高考数学(理数)一轮复习考点梳理与过关练习20《平面向量的数量积及向量的应用》(含详解) 考点一遍过,共33页。试卷主要包含了平面向量的数量积,向量的应用,反之,若,则点G是的重心,中,设,若,则是等内容,欢迎下载使用。
这是一份广西专用高考数学一轮复习考点规范练28平面向量的数量积与平面向量的应用含解析新人教A版理,共10页。
这是一份高考数学(理数)一轮复习检测卷:4.2《平面向量的数量积及应用》 (教师版)