提分专练05 以全等三角形为背景的中档计算与证明
展开
这是一份提分专练05 以全等三角形为背景的中档计算与证明,共12页。试卷主要包含了[2018·嘉兴] 已知,已知,问题等内容,欢迎下载使用。
提分专练(五) 以全等三角形为背景的中档计算与证明|类型1| 全等三角形与等腰三角形结合1.[2018·镇江] 如图T5-1,△ABC中,AB=AC,点E,F在边BC上,BE=CF,点D在AF的延长线上,AD=AC.(1)求证:△ABE≌△ACF;(2)若∠BAE=30°,则∠ADC= °. 图T5-1 2.[2017·苏州] 如图T5-2,∠A=∠B,AE=BE,点D在AC边上,∠1=∠2,AE和BD相交于点O.(1)求证:△AEC≌△BED;(2)若∠1=42°,求∠BDE的度数.图T5-2 3.[2018·嘉兴] 已知:在△ABC中,AB=AC,D为AC的中点,DE⊥AB,DF⊥BC,垂足分别为点E,F,且DE=DF.求证:△ABC是等边三角形.图T5-3 4.如图T5-4,△ACB和△DCE均为等腰三角形,点A,D,E在同一直线上,连接BE.若∠CAB=∠CBA=∠CDE=∠CED=50°.(1)求证:AD=BE;(2)求∠AEB的度数.图T5-4 |类型2| 全等三角形与直角三角形结合5.如图T5-5,在△ABC中,∠C=90°,AD平分∠CAB,交CB于点D,过点D作DE⊥AB于点E.(1)求证:△ACD≌△AED;(2)若∠B=30°,CD=1,求BD的长.图T5-5 |类型3| 全等三角形与等腰直角三角形结合6.已知:如图T5-6,△ACB和△ECD都是等腰直角三角形,∠ACB=∠ECD=90°,D为AB边上一点.(1)求证:△ACE≌△BCD;(2)求证:2CD2=AD2+DB2.图T5-6 7.如图T5-7,在△ABC和△BCD中,∠BAC=∠BCD=90°,AB=AC,CB=CD.延长CA至点E,使AE=AC;延长CB至点F,使BF=BC.连接AD,AF,DF,EF,延长DB交EF于点N.(1)求证:AD=AF;(2)求证:BD=EF.图T5-7 8.问题:如图T5-8①,在Rt△ABC中,∠BAC=90°,AB=AC,D为BC边上一点(不与点B,C重合),将线段AD绕点A逆时针旋转90°得到AE,连接EC,则线段BC,DC,EC之间满足的等量关系式为 . 探索:如图T5-8②,在Rt△ABC与Rt△ADE中,AB=AC,AD=AE,将△ADE绕点A旋转,使点D落在BC边上,试探索线段AD,BD,CD之间满足的等量关系,并证明你的结论.应用:如图T5-8③,在四边形ABCD中,∠ABC=∠ACB=∠ADC=45°.若BD=9,CD=3,求AD的长.图T5-8
参考答案1.解:(1)证明:∵AB=AC,∴∠B=∠ACF.在△ABE和△ACF中,∴△ABE≌△ACF.(2)75.2.[解析] (1)用ASA证明两三角形全等;(2)利用全等三角形的性质得出EC=ED,∠C=∠BDE,再利用等腰三角形的性质:等边对等角,即可求出∠C的度数,进而得到∠BDE的度数.解:(1)证明:∵AE和BD相交于点O,∴∠AOD=∠BOE.又∵在△AOD和△BOE中,∠A=∠B,∴∠BEO=∠2.又∵∠1=∠2,∴∠1=∠BEO,∴∠AEC=∠BED.在△AEC和△BED中,∴△AEC≌△BED(ASA).(2)∵△AEC≌△BED,∴EC=ED,∠C=∠BDE.在△EDC中,∵EC=ED,∠1=42°,∴∠C=∠EDC=69°,∴∠BDE=∠C=69°.3.证明:∵AB=AC,∴∠B=∠C.∵DE⊥AB,DF⊥BC,∴∠DEA=∠DFC=90°.∵D为AC的中点,∴DA=DC.又∵DE=DF,∴Rt△ADE≌Rt△CDF(HL).∴∠A=∠C.∴∠A=∠B=∠C.∴△ABC是等边三角形.4.解:(1)证明:∵∠CAB=∠CBA=∠CDE=∠CED=50°,∴∠ACB=∠DCE=180°-2×50°=80°,AC=BC,DC=EC.∵∠ACB=∠ACD+∠DCB,∠DCE=∠DCB+∠BCE,∴∠ACD=∠BCE.在△ACD和△BCE中,∴△ACD≌△BCE(SAS),∴AD=BE.(2)∵△ACD≌△BCE,∴∠ADC=∠BEC.∵点A,D,E在同一直线上,且∠CDE=50°,∴∠ADC=180°-∠CDE=130°,∴∠BEC=130°.∵∠BEC=∠CED+∠AEB,且∠CED=50°,∴∠AEB=∠BEC-∠CED=130°-50°=80°.5.解:(1)证明:∵AD平分∠CAB,∴∠CAD=∠EAD.∵DE⊥AB,∠C=90°,∴∠ACD=∠AED=90°.又∵AD=AD,∴△ACD≌△AED.(2)∵△ACD≌△AED,∴DE=CD=1.∵∠B=30°,∠DEB=90°,∴BD=2DE=2.6.证明:(1)∵△ABC和△ECD都是等腰直角三角形,∠ACB=∠ECD=90°,∴AC=BC,CD=CE,∵∠ACB=∠DCE=90°,∴∠ACE+∠ACD=∠BCD+∠ACD,∴∠ACE=∠BCD,在△ACE和△BCD中,∴△ACE≌△BCD(SAS).(2)∵△ACB是等腰直角三角形,∴∠B=∠BAC=45°.∵△ACE≌△BCD,∴∠B=∠CAE=45°.∴∠DAE=∠CAE+∠BAC=45°+45°=90°,∴AD2+AE2=DE2.由(1)知AE=DB,∴AD2+DB2=DE2,又DE2=2CD2,∴2CD2=AD2+DB2.7.证明:(1)∵AB=AC,∠BAC=90°,∴∠ABC=∠ACB=45°,∴∠ABF=135°,∵∠BCD=90°,∴∠ACD=135°.∴∠ABF=∠ACD,∵CB=CD,CB=BF,∴BF=CD,在△ABF和△ACD中,∴△ABF≌△ACD(SAS),∴AD=AF.(2)由(1)知,AF=AD,△ABF≌△ACD,∴∠FAB=∠DAC,∵∠BAC=90°,∴∠EAB=∠BAC=90°,∴∠EAF=∠BAD,在△AEF和△ABD中,∴△AEF≌△ABD(SAS),∴BD=EF.8.解:问题:BC=EC+DC.∵△ABC为等腰直角三角形,∴∠BAC=90°.又∵AD⊥AE,∴∠EAD=90°.∴∠EAD-∠CAD=∠BAC-∠CAD.∴∠BAD=∠CAE.又∵AB=AC,AE=AD,∴△ABD≌△ACE.∴BD=CE,∴BC=EC+DC.探索:线段AD,BD,CD之间满足的关系是BD2+CD2=2AD2.证明:如图①,连接CE.∵∠BAC=∠BAD+∠DAC=90°,AB=AC,∴∠ABC=∠ACB=45°.∵∠DAE=∠CAE+∠DAC=90°,∴∠BAD=∠CAE.在△BAD和△CAE中,∴△BAD≌△CAE.∴BD=CE,∠ACE=∠ABC=45°.∴∠BCE=∠ACB+∠ACE=90°.∴BD⊥CE.∵∠EAD=90°,AE=AD,∴ED=AD.在Rt△ECD中,ED2=CE2+CD2,∴BD2+CD2=2AD2.应用:如图②,作AE⊥AD于点A,交DC的延长线于点E,连接BE.∵∠ABC=∠ACB=∠ADC=45°,∠EAD=90°,∴∠BAC=90°,AB=AC,AE=AD.∴ED=AD.由“探索”的证明可知,BE=CD,BE⊥CD.在Rt△BED中,BD2=BE2+DE2.∴2AD2=BD2-CD2.∵BD=9,CD=3,∴2AD2=92-32=72.∴AD=6(负值舍去).
相关试卷
这是一份2022年中考数学基础题提分讲练专题:23 以圆为背景的证明与计算(含答案),共22页。
这是一份2022年中考数学基础题提分讲练专题:19 以三角形为背景的证明与计算(含答案),共23页。
这是一份提分专练06 以矩形、菱形、正方形为背景,共10页。试卷主要包含了已知等内容,欢迎下载使用。