(人教版)九年级数学下册同步精品 第3讲 反比例函数全章复习与巩固【讲义】学案
展开第3讲 反比例函数全章复习与巩固
课程标准 |
1.使学生理解并掌握反比例函数的概念,能根据实际问题中的条件确定反比例函数的解析式,能判断一个给定函数是否为反比例函数; 2.能描点画出反比例函数的图象,会用待定系数法求反比例函数的解析式; 3.能根据图象数形结合地分析并掌握反比例函数的性质,能利用这些性质分析和解决一些简单的实际问题. |
知识点01 反比例函数的概念
一般地,形如 (为常数,)的函数称为反比例函数,其中是自变量,是函数,自变量的取值范围是不等于0的一切实数.
要点诠释:
在中,自变量的取值范围是, ()可以写成 ()的形式,也可以写成 的形式.
知识点02 反比例函数解析式的确定
反比例函数解析式的确定方法是待定系数法.由于反比例函数中,只有一个待定系数,因此只需要知道一对的对应值或图象上的一个点的坐标,即可求出的值,从而确定其解析式.
知识点03 反比例函数的图象和性质
1.反比例函数的图象
反比例函数的图象是双曲线,它有两个分支,这两个分支分别位于第 象限或第 象限.它们关于 对称,反比例函数的图象与轴、轴都没有交点,即双曲线的两个分支无限接近坐标轴,但永远不与坐标轴相交.
要点诠释:
观察反比例函数的图象可得:和的值都不能为0,并且图象既是轴对称图形,又是中心对称图形,它有两条对称轴,对称中心是坐标原点.
①的图象是轴对称图形,对称轴为 两条直线;
②的图象是中心对称图形,对称中心为 ;
③(k≠0)在同一坐标系中的图象关于轴对称,也关于轴对称.
注:正比例函数与反比例函数,
当时,两图象没有交点;当时,两图象必有两个交点,且这两个交点关于原点成中心对称.
2.反比例函数的性质
(1)图象位置与反比例函数性质
当时,同号,图象在第 象限,且在每个象限内,随的增大而 ;当时,异号,图象在第 象限,且在每个象限内,随的增大而 .
(2)若点()在反比例函数的图象上,则点( )也在此图象上,故反比例函数的图象关于原点对称.
(3)正比例函数与反比例函数的性质比较
| 正比例函数 | 反比例函数 |
解析式 | ||
图 像 | 直线 | 有两个分支组成的曲线(双曲线) |
位 置 | ,一、三象限; | ,一、三象限 |
增减性 | ,随的增大而增大 | ,在每个象限,随的增大而减小 |
(4)反比例函数y=中的意义
①过双曲线(≠0) 上任意一点作轴、轴的垂线,所得矩形的面积为 .
②过双曲线(≠0) 上任意一点作一坐标轴的垂线,连接该点和原点,所得三角形的面积为 .
知识点04 应用反比例函数解决实际问题须注意以下几点
1.反比例函数在现实世界中普遍存在,在应用反比例函数知识解决实际问题时,要注意将实际问题转化为数学问题.
2.列出函数关系式后,要注意自变量的取值范围.
考法01 确定反比例函数的解析式
【典例1】在平面直角坐标系中,反比例函数y=(x>0,k>0)的图象经过点A(m,n),B(2,1),且n>1,过点B作y轴的垂线,垂足为C,若△ABC的面积为2,求点A的坐标.
【即学即练1】已知反比例函数与一次函数的图象都经过点P(2,-1),且当 时,这两个函数值互为相反数,求这两个函数的关系式.
考法02 反比例函数的图象及性质
【典例2】已知反比例函数(<0)的图象上有两点A(),B(),且,则的值是( ).
A.正数 B.负数 C.非负数 D.不能确定
【即学即练2】已知,点P()在反比例函数的图象上,则直线不经过的象限是( )
A. 第一象限 B. 第二象限 C. 第三象限 D. 第四象限
【典例3】反比例函数y=(a>0,a为常数)和y=在第一象限内的图象如图所示,点M在y=的图象上,MC⊥x轴于点C,交y=的图象于点A;MD⊥y轴于点D,交y=的图象于点B,当点M在y=的图象上运动时,以下结论:
①S△ODB=S△OCA;
②四边形OAMB的面积不变;
③当点A是MC的中点时,则点B是MD的中点.
其中正确结论的个数是( )
A.0 B.1 C.2 D.3
【典例4】反比例函数与一次函数在同一平面直角坐标系中的图象可能是( )
【即学即练3】已知,且则函数与在同一坐标系中的图象不可能是( ) .
考法03 反比例函数与一次函数综合
【典例5】如图所示,在平面直角坐标系中,一次函数(≠0)的图象与反比例函数(≠0)的图象相交于A、B两点.
求:(1)根据图象写出A、B两点的坐标并分别求出反比例函数和一次函数的解析式;
(2)根据图象写出:当为何值时,一次函数值大于反比例函数值.
【即学即练4】如图所示,一次函数的图象与反比例函数的图象交于点P,PA⊥轴于点A,PB⊥轴于点B,一次函数的图象分别交轴、轴于点C、点D,且,.
(1)求点D的坐标;
(2)求一次函数与反比例函数的表达式;
(3)根据图象写出当取何值时,一次函数的值小于反比例函数的值?
考法04 反比例函数的实际应用
【典例6】制作一种产品,需先将材料加热达到60℃后,再进行操作,设该材料温度为(℃),从加热开始计算的时间为.据了解,设该材料加热时,温度与时间成一次函数关系;停止加热进行操作时,温度与时间成反比例关系(如图).已知该材料在操作加工前的温度为15℃,加热5min后温度达到60℃.
(1)分别求出将材料加热和停止加热进行操作时,与的函数关系式;
(2)根据工艺要求,当材料的温度低于15℃时,须停止操作,那么从开始加热到停止操作,共经历了多少时间?
题组A 基础过关练
1. 已知函数的反比例函数,且图象在第二、四象限内,则的值是( ).
A.2 B.-2 C.±2 D.
2. 如图是三个反比例函数、、在轴上方的图象,由此观察得到的大小关系( ).
A. B.
C. D.
3. 如图,等腰直角三角形ABC位于第一象限,AB=AC=2,直角顶点A在直上,其中A点的横坐标为1,且两条直角边AB、AC分别平行于轴、轴,若双曲线 (≠0)与有交点,则的取值范围是( )
A. B. C. D.
4.如图,A、B是双曲线y=上的两点,过A点作AC⊥x轴,交OB于D点,垂足为C.若△ADO的面积为1,D为OB的中点,则k的值为( )
A. B. C.3 D.4
5. 函数y=的图象可能是( )
A. B. C. D.
6. 如图所示,在同一直角坐标系中,函数和函数(是常数且≠0)的图象只可能是( ).
7. 如图所示,反比例函数的图象与直线的交点为A,B,过点A作轴的平行线与过点B作轴的平行线相交于点C,则△ABC的面积为( ).
A.8 B.6 C.4 D.2
8. 如图,反比例函数的图象经过点A(-1,-2).则当>1时,函数值的取值范围是( )
A. >1 B.0<<1 C. >2 D.0<<2
题组B 能力提升练
9.直线与双曲线交于A(),B()两点,则 =___________.
10.已知与成正比例(比例系数为),与成反比例(比例系数为),若函数的图象经过点(1,2),(2,),则的值为________.
11. 在函数(为常数)的图象上有三个点(-2,),(-1,),(,),函数值,,的大小为_________.
12.已知点A(,5),B(2,)关于轴对称,若反比例函数的图象经过点C(,),则这个反比例函数的表达式为____________.
13.已知(),(),()是反比例函数的图象上的三个点,并且,则的大小关系是 .
14.设有反比例函数,(,),(,)为其图象上两点,若,,则的取值范围是_______.
15.如图,点A是反比例函数图象上一点,过点A作AB⊥y轴于点B,点C、D在x轴上,且BC∥AD,四边形ABCD的面积为3,则这个反比例函数的解析式为 .
16.如图所示是一次函数和反比例函数的图象,观察图象写出当 时,的取值范围为________.
题组C 培优拔尖练
17. 如图,在平面直径坐标系中,反比例函数y=(x>0)的图象上有一点A(m,4),过点A作AB⊥x轴于点B,将点B向右平移2个单位长度得到点C,过点C作y轴的平行线交反比例函数的图象于点D,CD=
(1)点D的横坐标为 (用含m的式子表示);
(2)求反比例函数的解析式.
18.如图所示,已知双曲线,经过Rt△OAB斜边OB的中点D,与直角边AB交于点C,DE⊥OA,,求反比例函数的解析式.
19. 如图所示,一次函数的图象经过点B(-1,0),且与反比例函数(为不等于0的常数)的图象在第一象限交于点A(1,).求:
(1)一次函数和反比例函数的解析式;
(2)当1≤≤6时,反比例函数的取值范围.
20.如图,反比例函数y=(k>0)与正比例函数y=ax相交于A(1,k),B(﹣k,﹣1)两点.
(1)求反比例函数和正比例函数的解析式;
(2)将正比例函数y=ax的图象平移,得到一次函数y=ax+b的图象,与函数y=(k>0)的图象交于C(x1,y1),D(x2,y2),且|x1﹣x2|•|y1﹣y2|=5,求b的值.