初中数学人教版八年级下册18.2.2 菱形当堂检测题
展开18.2.2菱形
一、基本概念
1、菱形的定义:一组邻边相等的平行四边形是菱形.
2、菱形的性质:
边:四条边都相等,对边分别平行
角:对角相等
对角线:互相垂直、平分,每一条对角线平分一组对角.
3、菱形的判定方法
(1)定义:邻边相等的平行四边形
(2)判定定理:对角线互相垂直的平行四边形 菱形
四边相等的四边形
二、典例分析
例.如图,将菱形ABCD的对角线AC向两个方向延长,分别至点E和点F,且使AE=CF.
(1)求证:四边形EBFD是菱形;
(2)若菱形EBFD的对角线BD=10,EF=24,求菱形EBFD的面积.
答案:(1)见详解;(2)120
【分析】
(1)根据菱形的性质和菱形的判定解答即可;
(2)根据菱形的性质以及面积公式解答即可.
【详解】
(1)证明:∵菱形ABCD的对角线AC,BD相交于点O,
∴OA=OC,OB=OD,AC⊥BD.
∵AE=CF,
∴OA+AE=OC+CF,即OE=OF.
∴四边形AECF是平行四边形.
∵AC⊥EF,
∴四边形EBFD是菱形.
(2)解:菱形EBFD的面积=.
【点睛】
本题考查了菱形的判定和性质,菱形的面积,正确掌所握菱形的判定和性质是解题的关键.
三、针对训练
1.如图菱形ABCD,对角线AC,BD相交于点O,若BD=8,AC=6,则AB的长是( )
A.5 B.6 C.8 D.10
2.若菱形的两条对角线长分别为10和24,则菱形的面积为( )
A.13 B.26 C.120 D.240
3.在菱形ABCD中,对角线AC、BD相交于点O,AB=5,AC=6,过点D作AC的平行线交BC的延长线于点E,则△BDE的面积为( )
A.22 B.24 C.48 D.44
4.如图,以O为圆心,长为半径画弧别交于A、B两点,再分别以A、B为圆心,以长为半径画弧,两弧交于点C,分别连接、,则四边形一定是( )
A.梯形 B.菱形 C.矩形 D.正方形
5.如图,在菱形ABCD中,AB=5,AC=8,过点B作BE⊥CD于点E,则BE的长为( )
A. B. C.6 D.
6.菱形的对角线之比为3:4,且面积为24,则它的对角线分别为________.
7.如图,在菱形ABCD外侧作等边△CBE,连接DE、AE.若∠ABC=100°,则∠DEA的大小为_________.
8.如图,菱形ABCD的对角线AC,BD相交于点O,E为DC的中点,若,则菱形的周长为__________.
9.如图,菱形ABCD的两条对角线长分别为AC=6,BD=8,点P是BC边上的一动点,则AP的最小值为 __.
10.如图,在矩形ABCD中,AD=3AB,点G,H分别在AD,BC上,连BG,DH,且,当=_______时,四边形BHDG为菱形.
11.如图,矩形ABCD中,,,过对角线BD中点O的直线分别交AB,CD边于点E,F.
(1)求证:四边形BEDF是平行四边形.
(2)当四边形BEDF是菱形时,求EF的长.
12.如图,在中,AD>AB,∠ABC的平分线交AD于点F,EFAB交BC于点E.
(1)求证:四边形ABEF是菱形;
(2)若AB=5,AE=6,的面积为36,求DF的长.
13.如图,四边形ABCD是菱形,DE⊥AB、DF⊥BC,垂足分别为E、F.求证:BE=BF.
14.如图,四边形ABCD是平行四边形,延长DA,BC,使得AE=CF,连接BE,DF.
(1)求证:△ABE≌△CDF;
(2)连接BD,若∠1=32°,∠ADB=22°,请直接写出当∠ABE= °时,四边形BFDE是菱形.
15.如图,在菱形ABCD中,于点E,于点F.
(1)求证:.
(2)若,,求DE的长.
参考答案
1.A
【分析】
由菱形的性质可得OA=OC=3,OB=OD=4,AO⊥BO,由勾股定理求出AB.
【详解】
解:∵四边形ABCD是菱形,AC=6,BD=8,
∴OA=OC=3,OB=OD=4,AO⊥BO,
在Rt△AOB中,由勾股定理得:,
故选:A.
【点睛】
本题考查了菱形的性质、勾股定理等知识;熟练掌握菱形对角线互相垂直且平分的性质是解题的关键.
2.C
【分析】
根据菱形的面积公式即可得到结论.
【详解】
解:菱形的两条对角线长分别为10和24,
菱形的面积为,
故选:C.
【点睛】
本题考查了菱形的性质,解题的关键是熟练掌握菱形的面积公式.
3.B
【分析】
先判断出四边形ACED是平行四边形,从而得出DE的长度,根据菱形的性质求出BD的长度,利用勾股定理的逆定理可得出△BDE是直角三角形,计算出面积即可.
【详解】
解: 菱形ABCD,
在Rt△BCO中, 即可得BD=8,
∴四边形ACED是平行四边形,
∴AC=DE=6,
BE=BC+CE=10,
∴△BDE是直角三角形,
∴S△BDE=DE•BD=24.
故选:B.
【点睛】
本题考查了菱形的性质,勾股定理的逆定理及三角形的面积,平行四边形的判定与性质,求出BD的长度,判断△BDE是直角三角形,是解答本题的关键.
4.B
【分析】
根据题意得到,然后根据菱形的判定方法求解即可.
【详解】
解:由题意可得:,
∴四边形是菱形.
故选:B.
【点睛】
此题考查了菱形的判定,解题的关键是熟练掌握菱形的判定方法.菱形的判定定理:①四条边都相等四边形是菱形;②一组邻边相等的平行四边形是菱形;③对角线垂直的平行四边形是菱形.
5.B
【分析】
根据菱形的性质求得的长,进而根据菱形的面积等于,即可求得的长
【详解】
解:如图,设的交点为,
四边形是菱形
,,,
在中,,
菱形的面积等于
故选B
【点睛】
本题考查了菱形的性质,掌握菱形的性质,求得的长是解题的关键.
6.6和8
【分析】
根据比例设两条对角线分别为3x、4x,再根据菱形的面积等于两对角线乘积的一半列式求出x的值即可.
【详解】
解:设两条对角线分别为3x、4x,
根据题意得,×3x•4x=24,
解得x=2(负值舍去),
∴菱形的两对角线的长分别为,.
故答案为:6和8.
【点睛】
本题考查了菱形的面积,主要利用了菱形的对角线互相垂直平分的性质,菱形的面积的求法,需熟记.
7.30°
【分析】
根据菱形的性质得到,,求得,根据等边三角形的性质得到,,求得,,,,根据等腰三角形的性质得到,,于是得到结论.
【详解】
解:四边形是菱形,
,,
,
是等边三角形,
,,
,,,,
,,
,
故答案为:.
【点睛】
本题考查了菱形的性质,等边三角形的性质,等腰三角形的判定和性质,解题的关键是熟练掌握菱形和等边三角形的性质.
8.16
【分析】
由菱形的性质和三角形中位线定理即可得菱形的边长,从而可求得菱形的周长.
【详解】
∵四边形ABCD是菱形,且对角线相交于点O
∴点O是AC的中点
∵E为DC的中点
∴OE为△CAD的中位线
∴AD=2OE=2×2=4
∴菱形的周长为:4×4=16
故答案为:16
【点睛】
本题考查了菱形的性质及三角形中位线定理、菱形周长等知识,掌握这些知识是解答本题的关键.
9.4.8
【分析】
由垂线段最短,可得AP⊥BC时,AP有最小值,由菱形的性质和勾股定理可求BC的长,由菱形的面积公式可求解.
【详解】
设AC与BD的交点为O,
∵点P是BC边上的一动点,
∴AP⊥BC时,AP有最小值,
∵四边形ABCD是菱形,
∴AC⊥BD,AO=CO=AC=3,BO=DO=BD=4,
∴,
∵,
∴,
故答案为:4.8.
【点睛】
本题考查了菱形的性质,勾股定理,确定当AP⊥BC时,AP有最小值是本题关键.
10.
【分析】
设 则再利用矩形的性质建立方程求解 从而可得答案.
【详解】
解: 四边形BHDG为菱形,
设
AD=3AB,
设 则
矩形ABCD,
解得:
故答案为:
【点睛】
本题考查的是勾股定理的应用,矩形的性质,菱形的性质,利用图形的性质建立方程确定之间的关系是解本题的关键.
11.(1)证明见解析;(2)
【分析】
(1)由题意知,,通过得到,证明四边形BEDF平行四边形.
(2)四边形BEDF为菱形,,;设,;在中用勾股定理,解出的长,在中用勾股定理,得到的长,由得到的值.
【详解】
(1)证明:∵四边形ABCD是矩形,O是BD的中点
∴,
在和中
∴(ASA)
∴
∴四边形BEDF是平行四边形.
(2)解:∵四边形BEDF为菱形,
∴,
又∵,
∴,
设,则
在中,
∴
在中,
∴.
【点睛】
本题考察了平行四边形的判定,三角形全等,菱形的性质,勾股定理.解题的关键与难点在于对平行四边形的性质的灵活运用.
12.(1)见解析;(2)2.5.
【分析】
(1)根据平行四边形的性质和角平分线的性质说明∠ABF=∠AFB、可得AB=AF,同理可得AB=AF,再由AF∥BE可得四边形ABEF是菱形;
(2)过A作AH⊥BE垂足为E,根据菱形的性质可得AO=EO、BO=FO,AF=EF=AB=5,AE⊥BF,利用勾股定理可得AO的长,进而可得AE长,利用菱形的面积公式计算出AH的长,然后根据ABCD的面积公式求出AD,最后根据线段的和差即可解答.
【详解】
(1)证明:四边形ABCD是平行四边形,
∴AD//BC,即AF//BE
∴∠FBE=∠AFB,
∵∠ABC的平分线交AD于点F,
∴∠ABF=∠EBF,
∴∠ABF=∠AFB,
∴AB=AF,
又∵AB//EF,AF//BE
∴四边形ABEF是平行四边形,
∵AB=AF,
∴四边形ABEF是菱形;
(2)如图:过A作AH⊥BE垂足为H,
∵四边形ABCD是菱形,
∴AO=EO,BO=FO,AF=AB=5,AE⊥BF,
∵AE=6,
∴AO=3,
∴BO=
∴BF=8,
∴S菱形ABEF=AE·BF=×8×6=24,
∴BE·AH=24,
∴AH=;
∵S平行四边形ABCD=BC·AH=36,
∴BC=
∵平行四边形ABCD
∴AD=BC=
∴FD=AD-AF=-5=2.5.
.
【点睛】
本题主要考查了菱形的判定与性质、平行四边形的性质以及面积的问题,灵活利用菱形的判定与性质、平行四边形的性质成为解答本题的关键.
13.见解析
【分析】
根据菱形的性质,可得AD=DC,AB=BC,∠A=∠C.从而得到△AED≌△CFD.从而得到AE=CF.即可求证.
【详解】
证明:∵四边形ABCD是菱形,
∴AD=DC,AB=BC,∠A=∠C.
∵DE⊥AB,DF⊥BC,
∴∠AED=∠CFD=90°.
∴△AED≌△CFD(AAS).
∴AE=CF.
∴AB﹣AE=BC﹣CF.
即:BE=BF.
【点睛】
本题主要考查了菱形的性质,全等三角形的判定和性质,熟练掌握菱形的对角相等,对边相等是解题的关键.
14.(1)见解析;(2)12
【分析】
(1)由“SAS”可证△ABE≌△CDF;
(2)通过证明BE=DE,可得结论.
【详解】
证明:(1)∵四边形ABCD是平行四边形,
∴AB=CD,∠BAD=∠BCD,
∴∠1=∠DCF,
在△ABE和△CDF中,
,
∴△ABE≌△CDF(SAS);
(2)当∠ABE=10°时,四边形BFDE是菱形,
理由如下:∵△ABE≌△CDF,
∴BE=DF,AE=CF,
∵四边形ABCD是平行四边形,
∴AD=BC,
∴AD+AE=BC+CF,
∴BF=DE,
∴四边形BFDE是平行四边形,
∵∠1=32°,∠ADB=22°,
∴∠ABD=∠1-∠ADB=10°,
∵∠ABE=12°,
∴∠DBE=22°,
∴∠DBE=∠ADB=22°,
∴BE=DE,
∴平行四边形BFDE是菱形,
故答案为:12.
【点睛】
本题考查了菱形的判定,平行四边形的判定和性质,全等三角形的判定和性质,掌握菱形的判定是解题的关键.
15.(1)见解析;(2)
【分析】
(1)直接根据AAS证明即可;
(2)由四边形ABCD是菱形,得到,,从而可以证明,推出,再由,可得,则.
【详解】
解:(1)证明:∵四边形ABCD是菱形
∴,
在和中,
∴(AAS);
(2)∵四边形ABCD是菱形,
∴,,
∵,
∴∠BEC=90°,
∴∠EBC=90°-∠C=45°,
∴,
∴,
∵,
∴,
∴.
【点睛】
本题主要考查了菱形的性质,全等三角形的性质与判定,等腰直角三角形的性质与判定,勾股定理,直角三角形两锐角互余等等,解题的关键在于能够熟练掌握菱形的性质.
数学八年级下册第十八章 平行四边形18.2 特殊的平行四边形18.2.2 菱形一课一练: 这是一份数学八年级下册第十八章 平行四边形18.2 特殊的平行四边形18.2.2 菱形一课一练,共8页。试卷主要包含了在中,点D是边上的点等内容,欢迎下载使用。
初中数学人教版八年级下册18.2.2 菱形课后练习题: 这是一份初中数学人教版八年级下册18.2.2 菱形课后练习题,共5页。试卷主要包含了单选题,填空题,解答题等内容,欢迎下载使用。
初中数学人教版八年级下册第十八章 平行四边形18.2 特殊的平行四边形18.2.2 菱形达标测试: 这是一份初中数学人教版八年级下册第十八章 平行四边形18.2 特殊的平行四边形18.2.2 菱形达标测试,共9页。试卷主要包含了下列说法错误的是等内容,欢迎下载使用。