所属成套资源:备战2022年中考数学必刷题型 (含知识点总结+解析)
专题01 三角函数的实际应用-备战2022年中考数学必刷题
展开
这是一份专题01 三角函数的实际应用-备战2022年中考数学必刷题,文件包含专题01三角函数的实际应用解析版doc、专题01三角函数的实际应用原卷版doc等2份试卷配套教学资源,其中试卷共35页, 欢迎下载使用。
一、在Rt△ABC中,∠C为直角,则∠A的锐角三角函数为(∠A可换成∠B):
对边
邻边
斜边
A
C
B
二、0°、30°、45°、60°、90°特殊角的三角函数值
三、常见术语:
(1)仰角:视线在水平线上方的角;俯角:视线在水平线下方的角。
(2)坡面的铅直高度和水平宽度的比叫做坡度(坡比)。用字母表示,即。坡度一般写成的形式,如等。
把坡面与水平面的夹角记作(叫做坡角),那么。
例题演练
一.选择题(共20小题)
1.如图,为了测量旗杆AB的高度,小明在点C处放置了高度为2米的测角仪CD,测得旗杆顶端点A的仰角∠ADE=50.2°,然后他沿着坡度为i=的斜坡CF走了20米到达点F,再沿水平方向走8米就到达了旗杆底端点B.则旗杆AB的高度约为( )米.(参考数据:sin50.2°≈0.77,cs50.2°≈0.64,tan50.2°≈1.2).
A.8.48B.14C.18.8D.30.8
2.我校兴趣小组同学为测量校外“御墅临枫”的一栋电梯高层AB的楼高,从校前广场的C处测得该座建筑物顶点A的仰角为45°,沿着C向上走到30米处的D点.再测得顶点A的仰角为22°,已知CD的坡度:i=1:2,A、B、C、D在同一平面内,则高楼AB的高度为( )(参考数据;sin22°≈0.37,cs22°≈0.93,tan22°≈0.40)
A.60B.70C.80D.90
3.小敏利用无人机测量某座山的垂直高度AB.如图所示,无人机在地面BC上方130米的D处测得山顶A的仰角为22°,测得山脚C的俯角为63.5°.已知AC的坡度为1:0.75,点A,B,C,D在同一平面内,则此山的垂直高度AB约为( )
(参考数据:sin63.5°≈0.89,tan63.5°≈2.00,sin22°≈0.37,tan22°≈0.40)
A.146.4米B.222.9米C.225.7米D.318.6米
4.重庆实验外国语学校某数学兴趣小组,想测量华岩寺内七佛塔的高度,他们在点C处测得七佛塔顶部A处的仰角为45°,再沿着坡度为i=1:2.4的斜坡CD向上走了5.2米到达点D,此时测得七佛塔顶部A的仰角为37°,七佛塔AB所在平台高度EF为0.8米,则七佛塔AB的高约为( )米.(参考数据:sin37°≈0.6,cs37°≈0.8,tan37°≈0.75)
A.20.8B.21.6C.23.2D.24
5.春节期间,某老师读到《行路难》中“闲来垂钓碧溪上,忽复乘舟梦日边.”邀约好友一起在江边垂钓,如图,河堤AB的坡度为1:2.4,AB长为5.2米,钓竿AC与水平线的夹角是60°,其长为6米,若钓竿AC与钓鱼线CD的夹角也是60°,则浮漂D与河堤下端B之间的距离约为( )(参考数据:=1.732)
A.2.33米B.2.35米C.2.36米D.2.42米
6.如图,为测量观光塔AB的高度,冬冬在坡度i=1:2.4的斜坡CD的D点测得塔顶A的仰角为52°,斜坡CD长为26米,C到塔底B的水平距离为9米.图中点A,B,C,D在同一平面内,则观光塔AB的高度约为( )米.
(结果精确到0.1米,参考数据:sin52°≈0.79,cs52°≈0.62,tan52°≈1.28)
A.10.5米B.16.1米C.20.7米D.32.2米
7.如图,一棵松树AB挺立在斜坡CB的顶端,斜坡CB长为52米,坡度为i=12:5,小张从与点C相距60米的点D处向上爬12米到达观景台DE的顶端点E,在此测得松树顶端点A的仰角为39°,则松树的高度AB约为( )
(参考数据:sin39°≈0.63,cs39°≈0.78,tan39°≈0.81)
A.16.8米B.28.8米C.40.8米D.64.2米
8.小明和好朋友一起去三亚旅游,他们租住的酒店AB坐落在坡度为i=1:2.4的斜坡CD上,酒店AB高为129米.某天,小明在酒店顶楼的海景房A处向外看风景,发现酒店前有一座雕像C(雕像的高度忽略不计),已知雕像C距离海岸线上的点D的距离CD为260米,雕像C与酒店AB的水平距离为36米,他站在A处还看到远处海面上一艘即将靠岸的轮船E的俯角为27°.则轮船E距离海岸线上的点D的距离ED的长大约为( )米.(参考数据:tan27°≈0.5,sin27°≈0.45)
A.262B.212C.244D.276
9.保利观澜旁边有一望江公园,公园里有一文峰塔,工程人员在与塔底中心的D同一水平线的A处,测得AD=20米,沿坡度i=0.75的斜坡AB走到B点,测得塔顶E仰角为37°,再沿水平方向走20米到C处,测得塔顶E的仰角为22°,则塔高DE为( )米.(结果精确到十分位)(sin37°≈0.60,cs37°≈0.80,tan37°≈0.75,sin22°≈0.37,cs22°≈0.93,tan22°≈0.40,)
A.18.3米B.19.3米C.20米D.21.2米
10.小李同学想测量广场科技楼CD的高度,他先在科技楼正对面的智慧楼AB的楼顶A点测得科技楼楼顶C点的仰角为45°.再在智慧楼的楼底B点测得科技楼楼顶C点的仰角为61°,然后从楼底B点经过4米长的平台BF到达楼梯F点,沿着坡度为i=1:2.4的楼梯向下到达楼梯底部E点,最后沿水平方向步行20米到达科技楼楼底D点(点A、B、C、D、E、F在同一平面内,智慧楼AB和科技楼CD与水平方向垂直).已知智慧楼AB的高为24米,则科技楼CD的高约为( )米.(结果精确到0.1,参考数据:sin61°≈0.87.cs61°≈0.48,tan61°≈1.80)
A.54.0B.56.4C.56.5D.56.6
11.某游客乘坐“金碧皇宫号游船”在长江和嘉陵江的交汇处A点,测得来福士最高楼顶点F的仰角为45°,此时他头顶正上方146米的点B处有架航拍无人机测得来福士最高楼顶点F的仰角为31°,游船朝码头方向行驶120米到达码头C,沿坡度i=1:2的斜坡CD走到点D,再向前走160米到达来福士楼底E,则来福士最高楼EF的高度约为( )
(结果精确到0.1,参考数据:sin31°≈0.52,cs31°≈0.87,tan31°≈0.60)
A.301.3米B.322.5米C.350.2米D.418.5米
12.如图是杨家坪步行街某天桥扶梯横截面的平面图.身高为1.5米的小明站在距离扶梯底端A处8米远的点P处,测得扶梯顶端B的仰角为18°,扶梯AB的坡度i=3:4,已知扶梯顶端B到天桥顶部的距离为2.3米,则小明所在位置点P到天桥顶部的距离是( )(参考数据:sin18°≈0.29,cs18°≈0.95,tan18°≈)
A.12.3米B.9.8米C.7.9米D.7.5米
13.如图,在某山坡前有一电视塔.小明在山坡坡脚P处测得电视塔顶端M的仰角为60°,在点P处小明沿山坡向上走39m到达D处,测得电视塔顶端M的仰角为30°.已知山坡坡度i=1:2.4,请你计算电视塔的高度ME约为( )m.(结果精确到0.1m,参考数据:≈1.732)
A.59.8B.58.8C.53.7D.57.9
14.如图,万达广场主楼楼顶立有广告牌DE,小辉准备利用所学的三角函数知识估测该主楼的高度.由于场地有限,不便测量,所以小辉沿坡度i=1:0.75的斜坡从看台前的B处步行50米到达C处,测得广告牌底部D的仰角为45°,广告牌顶部E的仰角为53°(小辉的身高忽略不计),已知广告牌DE=15米,则该主楼AD的高度约为( )(结果精确到整数,参考数据:sin53°≈0.8,cs53°≈0.6,tan53°≈1.3)
A.80mB.85mC.89mD.90m
15.图中的阴影部分是某水库大坝横截面,小明站在大坝上的A处看到一棵大树CD的影子刚好落在坝底的B处(点A与大树及其影子在同一平面内),此时太阳光与地面的夹角为60°,在A处测得树顶D的俯角为15°,如图所示,已知斜坡AB的坡度i=:1,若大树CD的高为8米,则大坝的高为( )米(结果精确到1米,参考数据≈1.414 ≈1.732)( )
A.18B.19C.20D.21
16.3月中旬某中学校园内的樱花树正值盛花期,供全校师生驻足观赏.如图,有一棵樱花树AB垂直于水平平台BC,通往平台有一斜坡CD,D、E在同一水平地面上,A、B、C、D、E均在同一平面内,已知BC=3米,CD=5米,DE=1米,斜坡CD的坡度是,李同学在水平地面E处测得树冠顶端A的仰角为62°,则樱花树的高度AB约为 ( )(参考数据:sin62°≈0.88,cs62°≈0.47,tan62°≈1.88)
A.9.16米B.12.04米C.13.16米D.15.04米
17.某数学兴趣小组在歌乐山森林公园借助无人机测量某山峰的垂直高度AB.如图所示,无人机在地面BC上方120米的D处测得山顶A的仰角为22°,测得山脚C的俯角为63.5°.已知AC的坡度为1:0.75,点A,B,C,D在同一平面内,则山峰的垂直高度AB约为( )
(参考数据:sin63.5°≈0.89,tan63.5°≈2.00,sin22°≈0.37,tan22°≈0.40)
A.141.4米B.188.6米C.205.7米D.308.6米
18.小菁在数学实践课中测量路灯的高度.如图,已知她的身高AB1.2米,她先站在A处看路灯顶端O的仰角为35°,再往前走3米站在C处,看路灯顶端O的仰角为65°.那么该路灯顶端O到地面的距离约为( )
(sin35°≈0.6,cs35°≈0.8,tan35°≈0.7,sin65°≈0.9,cs65°≈0.4,tan65°≈2.1)
A.3.2米B.3.9米C.4.4米D.4.7米
19.如图,某班数学兴趣小组利用数学知识测量建筑物DEFC的高度.他们从点A出发沿着坡度为i=1:2.4的斜坡AB步行26米到达点B处,此时测得建筑物顶端C的仰角α=35°,建筑物底端D的俯角β=30°.若AD为水平的地面,则此建筑物的高度CD约为( )米.(参考数据:≈1.7,tan35°≈0.7)
A.23.1B.21.9C.27.5D.30
20.如图,某数学活动小组为测量学校旗杆AB的高度,从旗杆正前方2m处的点C出发,沿坡度l=1:2的斜坡CD前进5m到达点D,在点D处安置测角仪,测得旗杆顶部A的仰角为37°,量得仪器的高DE为1.5m,已知A,B,C,D,E在同一平面内,AB⊥BC,AB∥DE,则旗杆AB的高度是( )
(参考数据:sin37°≈,cs37°≈,tan37°≈,≈1.732,≈2.236,结果保留一位小数)
A.8.2B.8.4C.8.6D.8.8
定义
边
范围
数量关系
正弦
(∠A为锐角)
余弦
(∠A为锐角)
正切
(∠A为锐角)
(倒数)
余切
(∠A为锐角)
三角函数
0°
30°
45°
60°
90°
0
1
1
0
0
1
不存在
不存在
1
0
相关试卷
这是一份中考数学必刷300题 专题20 图形规律-【必刷题】,文件包含专题20图形规律教师版doc、专题20图形规律学生版doc等2份试卷配套教学资源,其中试卷共19页, 欢迎下载使用。
这是一份中考数学必刷300题 专题19 式与方程-【必刷题】,文件包含专题19式与方程教师版doc、专题19式与方程学生版doc等2份试卷配套教学资源,其中试卷共24页, 欢迎下载使用。
这是一份中考数学必刷300题 专题05 不定方程应用型问题-【必刷题】,文件包含专题05不定方程应用型问题教师版doc、专题05不定方程应用型问题学生版doc等2份试卷配套教学资源,其中试卷共27页, 欢迎下载使用。