所属成套资源:备战2022年中考数学必刷题型 (含知识点总结+解析)
专题13 圆计算综合-备战2022年中考数学必刷题
展开
这是一份专题13 圆计算综合-备战2022年中考数学必刷题,文件包含专题13圆计算综合解析版doc、专题13圆计算综合原卷版doc等2份试卷配套教学资源,其中试卷共45页, 欢迎下载使用。
十三、圆的综合计算
知识点拨
圆的基本性质
1圆是轴对称图形,其对称轴是任意一条过圆心的直线。
2、垂径定理:垂直于弦的直径平分这条弦,并且平分弦所对的弧。
垂径定理的推论:平分弦(不是直径)的直径垂直于弦,并且平分弦对的弧。
3、圆具有旋转对称性,特别的圆是中心对称图形,对称中心是圆心。
圆心角定理:在同圆或等圆中,如果两个圆心角、两条弧、两条弦中有一组量相等,那么它们所对应的其余各组量都分别相等。
4、圆周角定理:一条弧所对的圆周角等于它所对的圆心角的一半。
圆周角定理推论1:在同圆或等圆中,同弧或等弧所对的圆周角相等。
圆周角定理推论2:直径所对的圆周角是直角;90°的圆周角所对的弦是直径。
直线和圆的位置关系:相交、相切、相离
当直线和圆相交时,d<r;反过来,当d<r时,直线和圆相交。
当直线和圆相切时,d=r;反过来,当d=r时,直线和圆相切。
当直线和圆相离时,d>r;反过来,当d>r时,直线和圆相离。
切线的性质定理:圆的切线垂直于过切点的直径
切线的判定定理:经过直径的一端,并且垂直于这条直径的直线是圆的切线。
切线长:在经过圆外一点的圆的切线上,这点到切点之间的线段的长叫做这点到圆的切线长。
切线长定理:从圆外一点引圆的两条切线,它们的切线长相等,圆心和圆外这点的连线平分两条切线的夹角。
例题演练
1.如图,AB为⊙O的直径,C为⊙O上一点,连接AC,BC,D为AB延长线上一点,连接CD,且∠BCD=∠A.
(1)求证:CD是⊙O的切线;
(2)若⊙O的半径为,△ABC的面积为2,求CD的长;
(3)在(2)的条件下,E为⊙O上一点,连接CE交线段OA于点F,若=,求BF的长.
【解答】(1)证明:连接OC,如图:
∵AB为⊙O的直径,
∴∠ACB=90°,∠A+∠ABC=90°,
∵OB=OC,
∴∠ABC=∠BCO,
又∠BCD=∠A,
∴∠BCD+∠BCO=90°,即∠DCO=90°,
∴OC⊥CD,
∴CD是⊙O的切线;
(2)过C作CM⊥AB于M,过B作BN⊥CD于N,如图:
∵⊙O的半径为,
∴AB=2,
∵△ABC的面积为2,
∴AB•CM=2,即×2•CM=2,
∴CM=2,
Rt△BCM中,∠BCM=90°﹣∠CBA,
Rt△ABC中,∠A=90°﹣∠CBA,
∴∠BCM=∠A,
∴tan∠BCM=tanA,即=,
∴=,
解得BM=﹣1,(BM=+1已舍去),
∵∠BCD=∠A,∠BCM=∠A,
∴∠BCD=∠BCM,
而∠BMC=∠BNC=90°,BC=BC,
∴△BCM≌△BCN(AAS),
∴CN=CM=2,BN=BM=﹣1,
∵∠DNB=∠DMC=90°,∠D=∠D,
∴△DBN∽△DCM,
∴==,
即==,
解得DN=2﹣2,
∴CD=DN+CN=2;
方法二:过C作CM⊥AB于M,连接OC,如图:
∵⊙O的半径为,
∴AB=2,
∵△ABC的面积为2,
∴AB•CM=2,即×2•CM=2,
∴CM=2,
Rt△MOC中,OM==1,
∵∠DMC=∠CMO=90°,∠CDM=90°﹣∠DCM=∠OCM,
∴△DCM∽△COM,
∴=,即=,
∴CD=2;
(3)过C作CM⊥AB于M,过E作EH⊥AB于H,连接OE,如图:
∵CM⊥AB,EH⊥AB,
∴==,
∵=,
∴==,
由(2)知CM=2,BM=﹣1,
∴HE=1,MF=2HF,
Rt△OEH中,OH===2,
∴AH=OA﹣OH=﹣2,
设HF=x,则MF=2x,
由AB=2可得:BM+MF+HF+AH=2,
∴(﹣1)+2x+x+(﹣2)=2,
解得:x=1,
∴HF=1,MF=2,
∴BF=BM+MF=(﹣1)+2=+1.
2.如图1,O为半圆的圆心,C、D为半圆上的两点,且=.连接AC并延长,与BD的延长线相交于点E.
(1)求证:CD=ED;
(2)AD与OC,BC分别交于点F,H.
①若CF=CH,如图2,求证:CF•AF=FO•AH;
②若圆的半径为2,BD=1,如图3,求AC的值.
【解答】(1)证明:如图1中,连接BC.
∵=,
∴∠DCB=∠DBC,
∵AB是直径,
∴∠ACB=∠BCE=90°,
∴∠E+∠DBC=90°,∠ECD+∠DCB=90°,
∴∠E=∠DCE,
∴CD=ED.
(2)①证明:如图2中,
∵CF=CH,
∴∠CFH=∠CHF,
∵∠AFO=∠CFH,
∴∠AFO=∠CHF,
∵=,
∴∠CAD=∠BAD,
∴△AFO∽△AHC,
∴=,
∴=,
∴CF•AF=OF•AH.
②解:如图3中,连接OD交BC于G.设OG=x,则DG=2﹣x.
∵=,
∴∠COD=∠BOD,
∵OC=OB,
∴OD⊥BC,CG=BG,
在Rt△OCG和Rt△BGD中,则有22﹣x2=12﹣(2﹣x)2,
∴x=,即OG=,
∵OA=OB,
∴OG是△ABC的中位线,
∴OG=AC,
∴AC=.
3.如图,点D在以AB为直径的⊙O上,过D作⊙O的切线交AB延长线于点C,AE⊥CD于点E,交⊙O于点F,连接AD,FD.
(1)求证:∠DAE=∠DAC;
(2)求证:DF•AC=AD•DC;
(3)若sin∠C=,AD=4,求EF的长.
【解答】(1)证明:如图,连接OD.
∵CD是⊙O的切线,
∴OD⊥EC,
∵AE⊥CE,
∴AE∥OD,
∴∠EAD=∠ADO,
∵OA=OD,
∴∠ADO=∠DAO,
∴∠DAE=∠DAC.
(2)证明:如图,连接BF.
∵AB是直径,
∴∠AFB=90°,
∵AE⊥EC,
∴∠AFB=∠E=90°,
∴BF∥EC,
∴∠ABF=∠C,
∵∠ADF=∠ABF,
∴∠ADF=∠C,
∵∠DAF=∠DAC,
∴△DAF∽△CAD,
∴=,
∴DF•AC=AD•DC.
(3)解:过点D作DH⊥AC于H.
∵CD是⊙O的切线,
∴∠ODC=90°,
∵sin∠C==,
∴可以假设OD=k,OC=4k,则OA=OD=k,CD=k,
∵•OD•DC=•OC•DH,
∴DH=k,
∴OH==k,
∴AH=OA+OH=k,
∵AD2=AH2+DH2,
∴(4)2=(k)2+(k)2
∴k=8或﹣8(舍弃),
∴DH=2,AC=5k=40,DC=8,
∵DF•AC=AD•DC,
∴DF=4,
∵∠ADE=∠DAC+∠C=∠ADF+∠EDF,∠ADF=∠C,
∴∠EDF=∠DAC,
∴sin∠EDF=sin∠DAH,
∴=,
∴=,
∴EF=6.
4.如图,⊙O的半径为1,点A是⊙O的直径BD延长线上的一点,C为⊙O上的一点,AD=CD,∠A=30°.
(1)求证:直线AC是⊙O的切线;
(2)求△ABC的面积;
(3)点E在上运动(不与B、D重合),过点C作CE的垂线,与EB的延长线交于点F.
①当点E运动到与点C关于直径BD对称时,求CF的长;
②当点E运动到什么位置时,CF取到最大值,并求出此时CF的长.
【解答】(1)证明:连接OC,如图1,
∵AD=CD,∠A=30°,
∴∠ACD=30°,
∴∠CDB=60°,
∵OD=OC,
∴∠OCD=60°,
∴∠ACO=∠ACD+∠OCD=90°,
∵OC是半径,
∴直线AC是⊙O的切线;
(2)解:∵∠OCD=60°,OC=OD,
∴△DCO是等边三角形,
∴CD=AD=OD=1,
作CH⊥BD于点H,则DH=,如图2,
∴CH===,
∵AB=AD+BD=3,
∴S△ABC==.
(3)①当点E运动到与点C关于直径AB对称时,CE⊥AB于点K,如图3,
∵BD为⊙O的直径,
∴CE=2CK=,
∵CF⊥CE,
∴∠ECF=90°,
∵∠CDB=∠CEB=60°,
∴CF=CE•tan60°==3,
②∵点E在上运动过程中,∠CDB=∠CEB=60°,
在Rt△ECF中,tan60°=,
∴CF=CE,
∴当CE最大时,CF取得最大值,
∴当CE为直径,即CE=2时,CF最大,最大值为2.
5.如图,⊙O是△ABC的外接圆,AD是⊙O的直径,AD⊥BC于点E.
(1)求证:∠BAD=∠CAD;
(2)连接BO并延长,交AC于点F,交⊙O于点G,连接GC.若⊙O的半径为5,OE=3,求GC和OF的长.
【解答】(1)证明:∵AD是⊙O的直径,AD⊥BC,
∴=,
∴∠BAD=∠CAD;
(2)解:在Rt△BOE中,OB=5,OE=3,
∴BE==4,
∵AD是⊙O的直径,AD⊥BC,
∴BC=2BE=8,
∵BG是⊙O的直径,
∴∠BCG=90°,
∴GC==6,
∵AD⊥BC,∠BCG=90°,
∴AE∥GC,
∴△AFO∽△CFG,
∴=,即=,
解得:OF=.
6.如图,在△ABC中,∠BAC=90°,点E在BC边上,过A,C,E三点的⊙O交AB边于另一点F,且F是的中点,AD是⊙O的一条直径,连接DE并延长交AB边于M点.
(1)求证:四边形CDMF为平行四边形;
(2)当CD=AB时,求sin∠ACF的值.
【解答】(1)证明:连接DF、EF,
∵∠BAC=90°,
∴FC是⊙O的直径,
∵F是的中点,
∴=,
∴∠ADF=∠EDF,
∵OF=OD,
∴∠ADF=∠OFD,
∴∠OFD=∠EDF,
∴FC∥DM,
∵OA=OD,OF=OC,∠BAC=90°,
∴四边形AFDC为矩形,
∴AF∥CD,
∴四边形CDMF为平行四边形;
(2)解:∵四边形AFDC为矩形,四边形CDMF为平行四边形,
∴CD=AF=FM=EF,
∵CD=AB,
∴CD=(2CD+BM),
∴CD=2BM,
∵BM∥CD,
∴△BEM∽△CED,
∴==,
∴EC=2BE,
设BM=a,则CD=2a,BF=3a,EF=2a,
在Rt△BEF中,BE==a,
∴EC=2a,
在Rt△CEF中,FC==2a,
在Rt△FAC中,sin∠ACF===.
7.如图,△ABC是⊙O的内接三角形,BD为⊙O的直径,过点C作CE⊥BD,垂足为E.
(1)求证:∠BAC=∠BCE;
(2)若∠BAC=60°,CE=3,求BD的长.
【解答】(1)证明:连接CD,
∵BD为⊙O的直径,
∴∠BCD=90°,
∴∠DCE+∠BCE=90°,
∵CE⊥BD,
∴∠DCE+∠D=90°,
∴∠D=∠BCE,
由圆周角定理得,∠D=∠BAC,
∴∠BAC=∠BCE;
(2)解:∵∠BAC=60°,
∴∠D=60°,
∴∠DBC=30°,
在Rt△CDE中,sinD=,
∴CD===2,
在Rt△CBD中,∠DBC=30°,
∴BD=2CD=4.
8.如图,⊙O为△ABC的外接圆,AB为⊙O直径,AC=BC,点D在劣弧BC上,CE⊥CD交AD于E,连接BD.
(1)求证:△ACE≌△BCD.
(2)若CD=2,BD=3,求⊙O的半径.
(3)若点F为DE的中点,连接CF,FO,设CD=a,BD=b,求CF+FO.(用含有a,b的代数式表示)
【解答】解:(1)证明:∵AB为⊙O直径,
∴∠ACB=90°,
∵CE⊥CD,
∴∠ECD=90°,
∴∠ACE=90°﹣∠ECB=∠BCD,
在△ACE和△BCD中,
,
∴△ACE≌△BCD(ASA);
(2)∵△ACE≌△BCD,
∴CE=CD,AE=BD,
∵CE⊥CD,
∴△ECD是等腰直角三角形,
∵CD=2,BD=3,
∴DE=2,AE=3,
∴AD=5,
∵AB为⊙O直径,
∴∠ADB=90°,
∴AB==2,
∴⊙O的半径为;
(3)法一:过O作OH⊥AD于H,如图:
∵△ECD是等腰直角三角形,CD=a,
∴ED=a,
∵F为DE的中点,
∴CF=DF=DE=a,
∵△ACE≌△BCD,
∴AE=BD=b,
∴AD=ED+AE=a+b,
∵OH⊥AD,∠ADB=90°,
∴OH∥BD,
∵AO=OB,
∴DH=AD=a+b,OH=BD=b,
∴HF=DH﹣DF=(a+b)﹣a=b,
在Rt△OHF中,FO==b,
∴CF+FO=a+b.
法二:延长AD至点H,使DH=AE,连接BH,如图:
由(1)得△ACE≌△BCD,
∴BD=AE=DH,
∵AB为直径,
∴∠ADB=∠BDH=90°,
∴△BDH为等腰直角三角形,
∵BD=b,
∴BH=b,
∵△ECD是等腰直角三角形,CD=a,
∴ED=a,CF=a=DF=EF,
而DH=AE,
∴AE+EF=DH+DF,即AF=HF,
∴F为AH中点,
∵O为AB中点,
∴FO=BD=b,
∴CF+FO=a+b.
9.如图,圆O中两条互相垂直的弦AB,CD交于点E.
(1)M是CD的中点,OM=3,CD=12,求圆O的半径长;
(2)点F在CD上,且CE=EF,求证:AF⊥BD.
【解答】解:(1)连接OD,如图:
∵M是CD的中点,CD=12,
∴DM=CD=6,OM⊥CD,∠OMD=90°,
Rt△OMD中,OD=,且OM=3,
∴OD==3,即圆O的半径长为3;
(2)连接AC,延长AF交BD于G,如图:
∵AB⊥CD,CE=EF,
∴AB是CF的垂直平分线,
∴AF=AC,即△ACF是等腰三角形,
∵CE=EF,
∴∠FAE=∠CAE,
∵=,
∴∠CAE=∠CDB,
∴∠FAE=∠CDB,
Rt△BDE中,∠CDB+∠B=90°,
∴∠FAE+∠B=90°,
∴∠AGB=90°,
∴AG⊥BD,即AF⊥BD.
10.如图,已知AB是⊙O的直径,∠ACD是所对的圆周角,∠ACD=30°.
(1)求∠DAB的度数;
(2)过点D作DE⊥AB,垂足为E,DE的延长线交⊙O于点F.若AB=4,求DF的长.
【解答】解:(1)如图,连接BD,
∵∠ACD=30°,
∴∠B=∠ACD=30°,
∵AB是⊙O的直径,
∴∠ADB=90°,
∴∠DAB=90°﹣∠B=60°;
(2)∵∠ADB=90°,∠B=30°,AB=4,
∴AD=AB=2,
∵∠DAB=60°,DE⊥AB,且AB是直径,
∴EF=DE=ADsin60°=,
∴DF=2DE=2.
11.如图,AB为⊙O的直径,点 C、D在⊙O上,AC与OD交于点E,AE=EC,OE=ED.连接BC、CD.求证:
(1)△AOE≌△CDE;
(2)四边形OBCD是菱形.
【解答】证明:(1)在△AOE和△CDE中,
,
∴△AOE≌△CDE(SAS);
(2)∵△AOE≌△CDE,
∴OA=CD,∠AOE=∠D,
∴OB∥CD,
∵OA=OB,
∴OB=CD,
∴四边形OBCD为平行四边形,
∵OB=OD,
∴四边形OBCD是菱形.
12.如图,已知点C是以AB为直径的半圆上一点,D是AB延长线上一点,过点D作BD的垂线交AC的延长线于点E,连结CD,且CD=ED.
(1)求证:CD是⊙O的切线;
(2)若tan∠DCE=2,BD=1,求⊙O的半径.
【解答】解:(1)连接OC,如图:
∵CD=DE,OC=OA,
∴∠DCE=∠E,∠OCA=∠OAC,
∵ED⊥AD,
∴∠ADE=90°,∠OAC+∠E=90°,
∴∠OCA+∠DCE=90°,
∴∠DCO=90°,
∴OC⊥CD,
∴CD是⊙O的切线;
(2)连接BC,如图:
∵CD=DE,
∴∠DCE=∠E,
∵tan∠DCE=2,
∴tanE=2,
∵ED⊥AD,
Rt△EDA中,=2,
设⊙O的半径为x,则OA=OB=x,
∵BD=1,
∴AD=2x+1,
∴=2,
∴ED=x+=CD,
∵CD是⊙O的切线,
∴CD2=BD•AD,
∴(x+)2=1×(2x+1),解得x=或x=﹣(舍去),
∴⊙O的半径为.
13.如图,AB是⊙O的直径,点C是⊙O上异于A、B的点,连接AC、BC,点D在BA的延长线上,且∠DCA=∠ABC,点E在DC的延长线上,且BE⊥DC.
(1)求证:DC是⊙O的切线;
(2)若=,BE=3,求DA的长.
【解答】(1)证明:连接OC,
∵OC=OB,
∴∠OCB=∠OBC,
∵∠ABC=∠DCA,
∴∠OCB=∠DCA,
又∵AB是⊙O的直径,
∴∠ACB=90°,
∴∠ACO+∠OCB=90°,
∴∠DCA+∠ACO=90°,
即∠DCO=90°,
∴DC⊥OC,
∵OC是半径,
∴DC是⊙O的切线;
(2)解:∵,且OA=OB,
设OA=OB=2x,OD=3x,
∴DB=OD+OB=5x,
∴,
又∵BE⊥DC,DC⊥OC,
∴OC∥BE,
∴△DCO∽△DEB,
∴,
∵BE=3,
∴OC=,
∴2x=,
∴x=,
∴AD=OD﹣OA=x=,
即AD的长为.
14.如图,在Rt△ABC中,∠C=90°,AE平分∠BAC交BC于点E,点D在AB上,DE⊥AE,⊙O是Rt△ADE的外接圆,交AC于点F.
(1)求证:BC是⊙O的切线;
(2)若⊙O的半径为5,AC=8,求S△BDE.
【解答】解:(1)连接OE,
∵∠C=90°,
∴∠2+∠AEC=90°,
又∵OA=OE,
∴∠1=∠OEA,
∵∠1=∠2,
∴∠AEC+∠OEA=90°,
即OE⊥BC,
∴BC是⊙O的切线;
(2)过点E作EM⊥AB,垂足为M,
∵∠1=∠2,∠C=∠AED=90°,
∴△ACE∽△AED,
∴=,
即=,
∴AE=4,
由勾股定理得,
CE==4=EM,
DE==2,
∵∠DEB=∠1,∠B=∠B,
∴△BDE∽△BEA,
∴==,
设BD=x,则BE=2x,
在Rt△BOE中,由勾股定理得,
OE2+BE2=OB2,
即52+(2x)2=(5+x)2,
解得x=,
∴S△BDE=BD•EM
=××4
=.
15.如图,A,B是⊙O上两点,且AB=OA,连接OB并延长到点C,使BC=OB,连接AC.
(1)求证:AC是⊙O的切线;
(2)点D,E分别是AC,OA的中点,DE所在直线交⊙O于点F,G,OA=4,求GF的长.
【解答】(1)证明:∵AB=OA=OB,
∴△OAB是等边三角形.
∴∠AOB=∠OBA=∠OAB=60°.
∵BC=OB,
∴BC=AB,
∴∠BAC=∠C,
∵∠OBA=∠BAC+∠C=60°,
∴∠BAC=∠C=30°.
∴∠OAC=∠OAB+∠BAC=90°.
∴OA⊥AC,
∵点A在⊙O上,
∴AC是⊙O的切线;
(2)解:如图,连结OF,过点O作OH⊥GF于点H.
∴GF=2HF,∠OHE=∠OHF=90°.
∵点D,E分别是AC,OA的中点,
∴OE=AE=OA=×4=2,DE∥OC.
∴∠OEH=∠AOB=60°,OH=OEsin∠OEH=.
∴HF===.
∴GF=2HF=2.
16.如图,在Rt△ABC中,∠ABC=90°,以AB的中点O为圆心,AB为直径的圆交AC于D,E是BC的中点,DE交BA的延长线于F.
(1)求证:FD是圆O的切线:
(2)若BC=4,FB=8,求AB的长.
【解答】(1)证明:
连接OD,
由题可知∠ABC=90°,
∵AB为直径,
∴∠ADB=∠BDC=90°,
∵点E是BC的中点,
∴DE=BC=BE=EC,
∴∠EDC=∠ECD,
又∵∠ECD+∠CBD=90°,∠ABD+∠CBD=90°,
∴∠ECD=∠ABD,
∵OB和OD是圆的半径,
∴∠ODB=∠OBD,
∴∠ODB+∠BDE=∠EDC+∠BDE=90°,
即∠ODE=90°,
故:FE是⊙O的切线.
(2)由(1)可知BE=EC=DE=BC=2,
在Rt△FBE中,FE===,
∴FD=FE﹣DE=﹣2,
又∵在Rt△FDO和Rt△FBE中有:∠FDO=∠FBE=90°,∠OFD=∠EFB,
∴△FDO∽△FBE,
∴,即,
求得OD=,
∴AB=2OD=﹣1,
故:AB长为﹣1.
17.如图,锐角三角形ABC内接于⊙O,∠BAC的平分线AG交⊙O于点G,交BC边于点F,连接BG.
(1)求证:△ABG∽△AFC.
(2)已知AB=a,AC=AF=b,求线段FG的长(用含a,b的代数式表示).
(3)已知点E在线段AF上(不与点A,点F重合),点D在线段AE上(不与点A,点E重合),∠ABD=∠CBE,求证:BG2=GE•GD.
【解答】(1)证明:∵AG平分∠BAC,
∴∠BAG=∠FAC,
又∵∠G=∠C,
∴△ABG∽△AFC;
(2)解:由(1)知,△ABG∽△AFC,
∴=,
∵AC=AF=b,
∴AB=AG=a,
∴FG=AG﹣AF=a﹣b;
(3)证明:∵∠CAG=∠CBG,∠BAG=∠CAG,
∴∠BAG=∠CBG,
∵∠ABD=∠CBE,
∴∠BDG=∠BAG+∠ABD=∠CBG+∠CBE=∠EBG,
又∵∠DGB=∠BGE,
∴△DGB∽△BGE,
∴=,
∴BG2=GE•GD.
18.如图,AB是⊙O的直径,C,D是⊙O上两点,C是的中点,过点C作AD的垂线,垂足是E.连接AC交BD于点F.
(1)求证:CE是⊙O的切线;
(2)若=,求cos∠ABD的值.
【解答】(1)证明:连接OC交BD于点G,
∵点C是的中点,
∴由圆的对称性得OC垂直平分BD,
∴∠DGC=90°,
∵AB是⊙O的直径,
∴∠ADB=90°,
∴∠EDB=90°,
∵CE⊥AE,
∴∠E=90°,
∴四边形EDGC是矩形,
∴∠ECG=90°,
∴CE⊥OC,
∴CE是⊙O的切线;
(2)解:连接BC,设FG=x,OB=r,
∵=,
设DF=t,DC=t,
由(1)得,BC=CD=t,BG=GD=x+t,
∵AB是⊙O的直径,
∴∠ACB=90°,
∴∠BCG+∠FCG=90°,
∵∠DGC=90°,
∴∠CFB+∠FCG=90°,
∴∠BCG=∠CFB,
∴Rt△BCG∽Rt△BFC,
∴BC2=BG•BF,
∴(t)2=(x+t)(2x+t)
解得x1=t,x2=﹣t(不符合题意,舍去),
∴CG===t,
∴OG=r﹣t,
在Rt△OBG中,由勾股定理得OG2+BG2=OB2,
∴(r﹣t)2+(2t)2=r2,
解得r=t,
∴cos∠ABD===.
19.如图,在△ABC中,AB=AC,⊙O是△ABC的外接圆,AE是直径,交BC于点H,点D在上,连接AD,CD过点E作EF∥BC交AD的延长线于点F,延长BC交AF于点G.
(1)求证:EF是⊙O的切线;
(2)若BC=2,AH=CG=3,求EF和CD的长.
【解答】证明:(1)∵AB=AC,
∴=,
∵AE是直径,
∴=,
∴∠BAE=∠CAE,
又∵AB=AC,
∴AE⊥BC,
又∵EF∥BC,
∴EF⊥AE,
∴EF是⊙O的切线;
(2)连接OC,设⊙O的半径为r,
∵AE⊥BC,
∴CH=BH=BC=1,
∴HG=HC+CG=4,
∴AG===5,
在Rt△OHC中,OH2+CH2=OC2,
∴(3﹣r)2+1=r2,
解得:r=,
∴AE=,
∵EF∥BC,
∴△AEF∽△AHG,
∴,
∴=,
∴EF=,
∵AH=3,BH=1,
∴AB===,
∵四边形ABCD内接于⊙O,
∴∠B+∠ADC=180°,
∵∠ADC+∠CDG=180°,
∴∠B=∠CDG,
又∵∠DGC=∠AGB,
∴△DCG∽△BAG,
∴,
∴=,
∴CD=.
20.如图,AB是⊙O的直径,点E、F在⊙O上,且=2,连接OE、AF,过点B作⊙O的切线,分别与OE、AF的延长线交于点C、D.
(1)求证:∠COB=∠A;
(2)若AB=6,CB=4,求线段FD的长.
【解答】(1)证明:取的中点M,连接OM、OF,
∵=2,
∴==,
∴∠COB=∠BOF,
∵∠A=∠BOF,
∴∠COB=∠A;
(2)解:连接BF,如图,
∵CD为⊙O的切线,
∴AB⊥CD,
∴∠OBC=∠ABD=90°,
∵∠COB=∠A,
∴△OBC∽△ABD,
∴=,即=,解得BD=8,
在Rt△ABD中,AD===10,
∵AB是⊙O的直径,
∴∠AFB=90°,
∵∠BDF=∠ADB,
∴Rt△DBF∽Rt△DAB,
∴=,即=,解得DF=.
相关试卷
这是一份中考数学必刷300题 专题18 几何综合问题-【必刷题】,文件包含专题18几何综合问题教师版doc、专题18几何综合问题学生版doc等2份试卷配套教学资源,其中试卷共82页, 欢迎下载使用。
这是一份中考数学必刷300题 专题13 圆计算综合-【必刷题】,文件包含专题13圆计算综合教师版doc、专题13圆计算综合学生版doc等2份试卷配套教学资源,其中试卷共46页, 欢迎下载使用。
这是一份中考数学必刷300题 专题12 圆相关基础计算-【必刷题】,文件包含专题12圆相关基础计算教师版doc、专题12圆相关基础计算学生版doc等2份试卷配套教学资源,其中试卷共23页, 欢迎下载使用。