28实际问题与一元一次方程(二)(基础)知识讲解
展开这是一份28实际问题与一元一次方程(二)(基础)知识讲解,共5页。
实际问题与一元一次方程(二)(基础)知识讲解
责编:杜少波
【学习目标】
(1)进一步提高分析实际问题中数量关系的能力,能熟练找出相等关系并列出方程;
(2)熟悉利润,存贷款,数字及方案设计问题的解题思路.
【要点梳理】
要点一、用一元一次方程解决实际问题的一般步骤
列方程解应用题的基本思路为:问题方程解答.由此可得解决此类问题的一般步骤为:审、设、列、解、检验、答.
要点诠释:
(1)“审”是指读懂题目,弄清题意,明确哪些是已知量,哪些是未知量,以及它们之间的关系,寻找等量关系.
(2)“设”就是设未知数,一般求什么就设什么为x,但有时也可以间接设未知数.
(3)“列”就是列方程,即列代数式表示相等关系中的各个量,列出方程,同时注意方程两边是同一类量,单位要统一.
(4)“解”就是解方程,求出未知数的值.
(5)“检验”就是指检验方程的解是否符合实际意义,当有不符合的解时,及时指出,舍去即可.
(6)“答”就是写出答案,注意单位要写清楚.
要点三、常见列方程解应用题的几种类型(续)
1.利润问题
(1)
(2) 标价=成本(或进价)×(1+利润率)
(3) 实际售价=标价×打折率
(4) 利润=售价-成本(或进价)=成本×利润率
注意:“商品利润=售价-成本”中的右边为正时,是盈利;当右边为负时,就是亏损.打几折就是按标价的十分之几或百分之几十销售.
2.存贷款问题
(1)利息=本金×利率×期数
(2)本息和(本利和)=本金+利息=本金+本金×利率×期数=本金×(1+利率×期数)
(3)实得利息=利息-利息税
(4)利息税=利息×利息税率
(5)年利率=月利率×12
(6)月利率=年利率×
3.数字问题
已知各数位上的数字,写出两位数,三位数等这类问题一般设间接未知数,例如:若一个两位数的个位数字为a,十位数字为b,则这个两位数可以表示为10b+a.
4.方案问题
选择设计方案的一般步骤:
(1)运用一元一次方程解应用题的方法求解两种方案值相等的情况.
(2)用特殊值试探法选择方案,取小于(或大于)一元一次方程解的值,比较两种方案的优劣性后下结论.
【典型例题】
类型一、利润问题
1.(2016•潮南区模拟)某商场销售的一款空调机每台的标价是3270元,在一次促销活动中,按标价的八折销售,仍可盈利9%.
(1)求这款空调每台的进价?(利润率==).
(2)在这次促销活动中,商场销售了这款空调机100台,问盈利多少元?
【思路点拨】(1)利用利润率==这一隐藏的等量关系列出方程即可;
(2)用销售量乘以每台的销售利润即可.
【答案与解析】
解:(1)设这款空调每台的进价为x元,根据题意得:
3270×0.8﹣x=9%x,
解得:x=2400,
答:这款空调每台的进价为2400元;
(2)商场销售这款空调机100台的盈利为:100×2400×9%=21600(元),
答:商场销售了这款空调机100台,盈利21600元.
【总结升华】解答此类问题时,一定要弄清题意.分清售价、进价、数量、利润之间的关系很重要.
举一反三:
【变式1】某个商品的进价是500元,把它提价40%后作为标价.如果商家要想保住12%的利润率搞促销活动,请你计算一下广告上可写出打几折?
【答案】
解:设该商品打x折,依题意,则:
500(1+40%)·=500(1+12%).
x==8.
答:该商品的广告上可写上打八折.
【变式2】张新和李明相约到图书大厦去买书,请你根据他们的对话内容(如图所示),求出李明上次所买书籍的原价.
【答案】
解:设李明上次购买书籍的原价为x元,由题意得:0.8x+20=x-12,
解这个方程得:x=160.
答:李明上次所买书籍的原价是160元.
类型二、存贷款问题
2.爸爸为小强存了一个五年期的教育储蓄,年利率为2.7%,五年后取出本息和为17025元,爸爸开始存入多少元.
【答案与解析】
解:设爸爸开始存入x元.根据题意,得x+x×2.7%×5=17025.
解之,得x=15000
答:爸爸开始存入15000元.
【总结升华】本息和=本金+利息,利息=本金×利率×期数.
类型三、数字问题
3.一个三位数,十位上的数是百位上的数的2倍,百位、个位上的数的和比十位上的数大2,又个位、十位、百位上的数的和是14,求这个三位数.
【答案与解析】
解:设百位上的数为x,则十位上的数为2x,个位上的数为14-2x-x
由题意得:x+14-2x-x=2x+2
解得:x=3
∴ x=3, 2x=6,14-2x-x=5
答:这个三位数为365
【总结升华】在数字问题中应注意:(1)求的是一个三位数,而不是三个数;(2)这类应用题,一般设间接未知数,切勿求出x就答;(3) 三位数字的表示方法是百位上的数字乘以100,10位上的数字乘以10,然后把所得的结果和个位数字相加.
举一反三:
【变式】(2015•嘉兴)公元前1700年的古埃及纸草书中,记载着一个数学问题:“它的全部,加上它的七分之一,其和等于19.”此问题中“它”的值为 .
【答案】
解:设“它”为x,
根据题意得:x+x=19,
解得:x=,
则“它”的值为.
类型四、方案设计问题
4.为鼓励学生参加体育锻炼.学校计划拿出不超过1600元的资金再购买一批篮球和排球.已知篮球和排球的单价比为3:2,单价和为80元.
(1)篮球和排球的单价分别是多少元?
(2)若要求购买的篮球和排球的总数量是36个,且购买的篮球数量不少于26个.请探究有哪几种购买方案?
【答案与解析】
解:(1)设篮球和排球的单价分别为3x元和2x元.
依题意3x+2x=80,解得x=16
即 3x=48,2x=32
答:篮球和排球的单价分别为48元和32元.
(2)采用列表法探索:
类别 方案 | 篮球(x个) | 排球(36-x)个 | 合计(元) |
(1) | 26 | 10 | 1568 |
(2) | 27 | 9 | 1584 |
(3) | 28 | 8 | 1600 |
(4) | 29 | 7 | 1616 |
由列表可知,共有三种购买方案:
方案一:购买篮球26个,排球10个;
方案二:购买篮球27个,排球9个;
方案三:购买篮球28个,排球8个.
【总结升华】本例设未知数的方法很独特,值得借鉴.采用列表的方法探索方案,值得学习.
举一反三:
【变式】某校组织10位教师和部分学生外出考察,全程票价为25元,对集体购票,客运公司有两种优惠方案可供选择:方案一:所有师生按票价的88%购票;方案二:前20人购全票,从第21人开始,每人按票价的80%购票.
(1)若有30位学生参加考察,问选择哪种方案更省钱?
(2)参加考察的学生人数是多少时,两种方案车费一样多?
【答案】
解:设有x位学生参加考察.
按方案一购票费用为:25×88%(10+x)=22x+220
按方案二购票费用为:20×25+25×80%(x+10-20)=20x+300
(1)当x=30时:
22x+220=660+220=880(元)
20x+300=600+300=900(元)
答:当有30位学生参加考察,选择方案一更省钱.
(2)设22x+220=20x+300,解得:x=40
答:参加考察的学生人数为40人时,两种方案车费一样多.
相关试卷
这是一份初中数学人教版八年级上册13.1.1 轴对称课时训练,共10页。
这是一份数学人教版3.4 实际问题与一元一次方程课时作业,共4页。
这是一份初中数学3.4 实际问题与一元一次方程同步训练题,共5页。