13实数(基础)知识讲解练习题
展开实数(基础)
【学习目标】
1. 了解无理数和实数的意义;
2. 了解有理数的概念、运算法则在实数范围内仍适用 .
【要点梳理】
要点一、有理数与无理数
有限小数和无限循环小数都称为有理数.无限不循环小数又叫无理数.
要点诠释:(1)无理数的特征:无理数的小数部分位数无限.无理数的小数部分不循环,不能表示成分数的形式.
(2)常见的无理数有三种形式:①含类.②看似循环而实质不循环的数,如:1.313113111…….③带有根号的数,但根号下的数字开方开不尽,如.
要点二、实数
有理数和无理数统称为实数.
1.实数的分类
按定义分:
实数
按与0的大小关系分:
实数
2.实数与数轴上的点一一对应.
数轴上的任何一个点都对应一个实数,反之任何一个实数都能在数轴上找到一个点与之对应.
要点三、实数大小的比较
对于数轴上的任意两个点,右边的点所表示的实数总是比左边的点表示的实数大.
正实数大于0,负实数小于0,两个负数,绝对值大的反而小.
要点四、实数的运算
有理数关于相反数和绝对值的意义同样适合于实数.
当数从有理数扩充到实数以后,实数之间不仅可以进行加、减、乘、除(除数不为0)、乘方运算,而且正数及0可以进行开平方运算,任意一个实数可以进行开立方运算.在进行实数的运算时,有理数的运算法则及运算性质等同样适用.
【典型例题】
类型一、实数概念
1、指出下列各数中的有理数和无理数:
【思路点拨】对实数进行分类时,应先对某些数进行计算或化简,然后根据它的最后结果进行分类,不能仅看到根号表示的数就认为是无理数.π是无理数,化简后含π的代数式也是无理数.
【答案与解析】有理数有
无理数有……
【总结升华】有限小数和无限循环小数都称为有理数.无限不循环小数又叫无理数.
常见的无理数有三种形式:①含类.②看似循环而实质不循环的数,如:0.1010010001…….③带有根号的数,但根号下的数字开方开不尽,如,,,.
举一反三:
【变式】(2015春•聊城校级月考)在下列语句中:
①无理数的相反数是无理数;
②一个数的绝对值一定是非负数;
③有理数比无理数小;
④无限小数不一定是无理数.
其中正确的是( )
A.②③ B.②③④ C.①②④ D.②④
【答案】C;
解:①因为实数包括有理数和无理数,无理数的相反数 不可能式有理数,故本选项正确;
②一个数的绝对值一定≥0,故本选项正确;
③数的大小,和它是有理数还是无理数无关,故本选项是错误的;
④无限循环小数是有理数,故本选项正确.
类型二、实数大小的比较
2、比较和0.5的大小.
【答案与解析】
解:作商,得.
因为,即,所以.
【总结升华】根据若,均为正数,则由“,,”分别得到结论“,,,”从而比较两个实数的大小.比较大小的方法有作差法和作商法等,根据具体情况选用适当的方法.
举一反三:
【变式】比较大小
【答案】<; >; <; <; <; >; <.
3、(2015•枣庄)实数a,b,c在数轴上对应的点如图所示,则下列式子中正确的是( )
A.ac>bc B.|a﹣b|=a﹣b C.﹣a<﹣b<c D.﹣a﹣c>﹣b﹣c
【答案】D;
【解析】
解:∵由图可知,a<b<0<c,
∴A、ac<bc,故A选项错误;
B、∵a<b,
∴a﹣b<0,
∴|a﹣b|=b﹣a,故B选项错误;
C、∵a<b<0,
∴﹣a>﹣b,故C选项错误;
D、∵﹣a>﹣b,c>0,
∴﹣a﹣c>﹣b﹣c,故D选项正确.
故选:D.
【总结升华】本题考查的是实数与数轴,熟知数轴上各点与实数是一一对应关系是解答此题的关键.
类型三、实数的运算
4、化简:
(1) (2) (3)
【答案与解析】
解:
.
【总结升华】有理数关于相反数和绝对值的意义同样适合于实数.有理数的运算法则及运算性质等同样适用.
5、若,则________.
【思路点拨】由有限个非负数之和为零,则每个数都应为零可得到方程中,b,c的值.
【答案】3;
【解析】
解:由非负数性质可知:,即,∴ .
【总结升华】初中阶段所学的非负数有||,,非负数的和为0,只能每个非负数分别为0 .
举一反三:
【变式】已知,求的值.
【答案】
解:由已知得,解得.
∴=.
01中考总复习:实数--知识讲解(基础): 这是一份01中考总复习:实数--知识讲解(基础),共8页。
15.实数全章复习与巩固(基础)知识讲解: 这是一份15.实数全章复习与巩固(基础)知识讲解,共6页。
36角(基础)知识讲解练习题: 这是一份36角(基础)知识讲解练习题,共8页。