中考数学一轮全程复习课时练第43课时《开放与探究型问题》(学生版)
展开一、选择题
1.如图,点A,B,C在一条直线上,△ABD,△BCE均为等边三角形,连结AE和CD,AE分别交CD,BD于点M,P,CD交BE于点Q,连结PQ,BM,下面结论:①△ABE≌△DBC;②∠DMA=60°;③△BPQ为等边三角形;④MB平分∠AMC,
其中结论正确的有( )
A.1个 B.2个 C.3个 D.4个
2.如图,AC是矩形ABCD的对角线,⊙O是△ABC的内切圆,现将矩形ABCD按如图所示的方式折叠,使点D与点O重合,折痕为FG,点F,G分别在边AD,BC上,连结OG,DG,若OG⊥DG,且⊙O的半径长为1,则下列结论不成立的是 ( )
A.CD+DF=4
B.CD-DF=2eq \r(3)-3
C.BC+AB=2eq \r(3)+4
D.BC-AB=2
二、填空题
3.如图,正方形ABCD边长为1,以AB为直径作半圆,点P是CD中点,BP与半圆交于点Q,连结DQ.给出如下结论:①DQ=1;②eq \f(PQ,BQ)=eq \f(3,2);③S△PDQ=eq \f(1,8);④cs∠ADQ=eq \f(3,5).其中正确结论是____.(填写序号)
4.如图,AB是⊙O的直径,P为AB延长线上的一个动点,过点P作⊙O的切线,切点为C.连结AC,BC,作∠APC的平分线交AC于点D.下列结论正确的是__②③④__.(写出所有正确结论的序号)
①△CPD∽△DPA;
②若∠A=30°,则PC=eq \r(3)BC;
③若∠CPA=30°,则PB=OB;
④无论点P在AB延长线上的位置如何变化,∠CDP为定值.
三、解答题
5.在△ABC中,AB=AC,∠A=60°,点D是线段BC的中点,∠EDF=120°,DE与线段AB相交于点E,DF与线段AC(或AC的延长线)相交于点F.
(1)如图①,若DF⊥AC,垂足为F,AB=4,求BE的长;
(2)如图②,将(1)中的∠EDF绕点D顺时针旋转一定的角度,DF仍与线段AC相交于点F.求证:BE+CF=eq \f(1,2)AB;
(3)如图③,将(2)中的∠EDF继续绕点D顺时针旋转一定的角度,使DF与线段AC的延长线交与点F,作DN⊥AC于点N,若DN=FN,求证:BE+CF=eq \r(3)(BE-CF).
6.(1)如图①,已知△ABC,以AB,AC为边向△ABC外作等边△ABD和等边△ACE,连结BE,CD.请你完成图形,并证明:BE=CD;(尺规作图,不写作法,保留作图痕迹)
(2)如图②,已知△ABC,以AB,AC为边向外作正方形ABFD和正方形ACGE,连结BE,CD.BE与CD有什么数量关系?简单说明理由;
(3)运用(1)(2)解答中积累的经验和知识,完成下题:如图③,要测量池塘两岸相对的两点B,E的距离,已经测得∠ABC=45°,∠CAE=90°,AB=BC=100 m,AC=AE,求BE的长.
7.如图,矩形ABCD中,AD=2AB,E是AD边上一点,DE=eq \f(1,n)AD(n为大于2的整数),连结BE,作BE的垂直平分线分别交AD,BC于点F,G,FG与BE的交点为O,连结BF和EG.
(1)试判断四边形BFEG的形状,并说明理由;
(2)当AB=a(a为常数),n=3时,求FG的长;
(3)记四边形BFEG的面积为S1,矩形ABCD的面积为S2,当eq \f(S1,S2)=eq \f(17,30)时,求n的值.
8.如图,已知AB是圆O的切线,切点为B,直线AO交圆O于C,D两点,CD=2,∠DAB=30°,动点P在直线AB上运动,PC交圆O于另一点Q.
(1)当点P运动到Q,C两点重合时(如图①),求AP的长;
(2)点运动过程中,有几个位置(几种情况)使△CQD的面积为eq \f(1,2)?(直接写出答案)
(3)当使△CQD的面积为eq \f(1,2),且Q位于以CD为直径的上半圆上,CQ>QD时(如图②),求AP的长.
10.类比等腰三角形的定义,我们定义:有一组邻边相等的凸四边形叫做“等邻边四边形”.
(1)概念理解
如图43-10①,在四边形ABCD中,添加一个条件使得四边形ABCD是“等邻边四边形”.请写出你添加的一个条件;
(2)问题探究
①小红猜想:对角线互相平分的“等邻边四边形”是菱形.她的猜想正确吗?请说明理由;
②如图②,小红画了一个Rt△ABC,其中∠ABC=90°,AB=2,BC=1,并将Rt△ABC沿∠ABC的平分线BB′方向平移得到△A′B′C′,连结AA′,BC′.小红要使平移后的四边形ABC′A′是“等邻边四边形”,应平移多少距离(即线段BB′的长)?
(3)应用拓展
如图③,“等邻边四边形”ABCD中,AB=AD,∠BAD+∠BCD=90°,AC,BD为对角线,AC=eq \r(2)AB.试探究BC,CD,BD的数量关系.
中考数学一轮全程复习课时练第43课时《开放与探究型问题》(教师版): 这是一份中考数学一轮全程复习课时练第43课时《开放与探究型问题》(教师版),共11页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
中考数学一轮全程复习课时练第46课时《二次函数综合型问题》(学生版): 这是一份中考数学一轮全程复习课时练第46课时《二次函数综合型问题》(学生版),共4页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
中考数学一轮全程复习课时练第45课时《实验操作型问题》(学生版): 这是一份中考数学一轮全程复习课时练第45课时《实验操作型问题》(学生版),共4页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。