贵州省黔东南州2020届高三高考模拟考试卷数学(理科)试题 ( 含解析)
展开考生注意:
1.本试卷分选择题和非选择题两部分,共150分.考试时间120分钟,
2.请将各题答案填写在答题卡上.
一、选择题:本大题共12小题,每小题5分. 共60分。在每小题给出的四个选项中,只有一项是符合题目要求的.
1.若,则
A.的实部大于的实部 B.的实部等于的实部
C.的虚部大于的虚部 D.的虚部小于的虚部
2.已知集合,,则=
A. B. C. D.
3.若向量不,则=
A. B. C. D.
4.某单位去年的开支分布的折线图如图1所示,在这一年中的水、电、交通开支(单位:万元)如图2所示.则该单位去年的水费开支占总开支的百分比为
A.7.5% B.6.25% C.10.25% D.31.25%
5.如图.在正方体中.为的中点,几何体的侧视图与俯视图如图所示,则该几何体的正视图为
6.若函数.则
A.的最大值为1 B.
C.的最小正周期为2 D.
7.设双曲线,,的离心率分别为,则
A. C. D.
8.若,则的最小值为
A.2 B. C.4 D.
9.若,则=
A. B. C. D.
10.在外国人学唱中文歌曲的大赛中,有白皮肤选手6人,黑皮肤选手6人,黄皮肤选手8人,一等奖规定至少2个至多3个名额,且要求一等奖获奖选手不能全是同种肤色,则一等奖人选的所有可能的种数为
A.420 B.766 C.1080 D.1176
11.在正方体中,为棱上一点,且,若二面角为45°,则四面体的外接球的表面积为
A. B. C. D.
12.若曲线存在两条垂直于轴的切线,则的取值范围为
A. B. C. D.
二、填空题:本大题共4小题,每小题5分,共20分,把答案填在答题卡的相应位置.
13.分别为△内角的对边.已知,则 ▲ .
14.若满足约束条件,则的最小值为 ▲ .
15.函数的值域为 ▲ .
16.设,,若直线上存在一点满足,且△的内心到轴的距离为,则 ▲ 。
三、解答题:本大题共6小题,共70分.解答应写出必要的文字说明、证明过程或演算步骤.17~21题为必考题,每个试题考生都必须作答.第22,23题为选考题,考生根据要求作答.
(一)必考题:共60分
17.(12分)
如图,四棱锥的底面是正方形,为的中点,,,,.
(1)证明:平面.
(2)求与平面所成角的正弦值.
18.(12分)
某厂加工的零件按箱出厂,每箱有10个零件,在出厂之前需要对每箱的零件作检验,人工检验方法如下:先从每箱的零件中随机抽取4个零件,若抽取的零件都是正品或都是次品,则停止检验;若抽取的零件至少有1个至多有3个次品,则对剩下的6个零件逐一检验.已知每个零件检验合格的概率为.每个零件是否检验合格相互独立,且每个零件的人工检验费为2元.
(1)设1箱零件人工检验总费用为元,求的分布列;
(2)除了人工检验方法外还有机器检验方法,机器检验需要对每箱的每个零件作检验,每个零件的检验费为元.现有1000箱零件需要检验,以检验总费用的数学期望为依据,在人工检验与机器检验中,应该选择哪一个?说明你的理由.
19.(12分)
设为数列的前n项和,,且.
(1)证明数列为等比数列,并求.
(2)求数列的前项和.
20.(12分)
已知函数
(1)讨论的单调性;
(2)当时,证明:.
21.(12分)
已知抛物线的焦点为,直线与抛物线交于两点.
(1)若过点,证明:.
(2)若,点在曲线上,的中点均在抛物线上,求△面积的取值范围.
(二)选考题:共10分.请考生在第22、23两题中任选一题作答,如果多做,则按所做的第一题计分.
22.[选修4—4:坐标系与参数方程](10分)
在直角坐标系中,曲线的参数方程为,(为参数),以坐标原点为极点,轴的正半轴为极轴建立极坐标系.
(1)求曲线的极坐标方程;
(2)若点的极坐标为,过的直线与曲线交于两点,求的最大值.
23.[选修4—5:不等式选讲](10分)
已知函数.
(1)求不等式的解集;
(2)记函数的最小值为,若均为正实数,且,求的最小值.
贵州省2023届普通高等学校招生高考模拟高三适应性测试理科数学试题(含解析): 这是一份贵州省2023届普通高等学校招生高考模拟高三适应性测试理科数学试题(含解析),共22页。试卷主要包含了单选题,填空题,解答题等内容,欢迎下载使用。
2020黔东南州高三高考模拟考试数学(理)试题PDF版含解析: 这是一份2020黔东南州高三高考模拟考试数学(理)试题PDF版含解析
2020黔东南州高三高考模拟考试数学(文)试题PDF版含解析: 这是一份2020黔东南州高三高考模拟考试数学(文)试题PDF版含解析