![2022年最新强化训练冀教版八年级数学下册第二十一章一次函数同步测评试卷(精选)第1页](http://img-preview.51jiaoxi.com/2/3/12764483/0/0.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![2022年最新强化训练冀教版八年级数学下册第二十一章一次函数同步测评试卷(精选)第2页](http://img-preview.51jiaoxi.com/2/3/12764483/0/1.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![2022年最新强化训练冀教版八年级数学下册第二十一章一次函数同步测评试卷(精选)第3页](http://img-preview.51jiaoxi.com/2/3/12764483/0/2.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
冀教版八年级下册第二十一章 一次函数综合与测试课时训练
展开
这是一份冀教版八年级下册第二十一章 一次函数综合与测试课时训练,共35页。
八年级数学下册第二十一章一次函数同步测评
考试时间:90分钟;命题人:数学教研组
考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)
一、单选题(10小题,每小题3分,共计30分)
1、如图,在Rt△ABO中,∠OBA=90°,A(4,4),且,点D为OB的中点,点P为边OA上的动点,使四边形PDBC周长最小的点P的坐标为( )
A.(2,2) B.(,) C.(,) D.(,)
2、点A(3,)和点B(-2,)都在直线y=-2x+3上,则和的大小关系是( )
A. B. C. D.不能确定
3、、两地相距,甲骑摩托车从地匀速驶向地.当甲行驶小时途径地时,一辆货车刚好从地出发匀速驶向地,当货车到达地后立即掉头以原速匀速驶向地.如图表示两车与地的距离和甲出发的时间的函数关系.则下列说法错误的是( )
A.甲行驶的速度为 B.货车返回途中与甲相遇后又经过甲到地
C.甲行驶小时时货车到达地 D.甲行驶到地需要
4、甲、乙两车从城出发前往城,在整个行驶过程中,汽车离开城的距离与行驶时间的函数图象如图所示,下列说法正确的有( )
①甲车的速度为;②乙车用了到达城;③甲车出发时,乙车追上甲车
A.0个 B.1个 C.2个 D.3个
5、已知正比例函数y=3x的图象上有两点M(x1,y1)、N(x2,y2),如果x1>x2,那么y1与y2的大小关系是( )
A.y1>y2 B.y1=y2 C.y1<y2 D.不能确定
6、甲、乙两车从A城出发匀速行驶至B城.在整个行驶过程中,甲、乙两车离开A城的距离y(千米)与甲车行驶的时间t(小时)之间的函数关系如图所示.
则下列结论:
①A,B两城相距300千米;
②乙车比甲车晚出发1小时,却早到1小时;
③乙车出发后2.5小时追上甲车;
④当甲、乙两车相距50千米时,或.
其中正确的结论有( )
A.1个 B.2个 C.3个 D.4个
7、如图,李爷爷要围一个长方形菜园ABCD,菜园的一边利用足够长的墙,用篱笆围成的另外三边的总长恰好为24m,设边BC的长为xm,边AB的长为ym(x>y).则y与x之间的函数表达式为( )
A.y=﹣2x+24(0<x<12) B.y=﹣x+12(8<x<24)
C.y=2x﹣24(0<x<12) D.y=x﹣12(8<x<24)
8、关于函数y=-2x+1,下列结论正确的是( )
A.图像经过点 B.y随x的增大而增大
C.图像不经过第四象限 D.图像与直线y=-2x平行
9、下列各点中,不在一次函数的图象上的是( )
A. B.
C. D.
10、,两地相距80km,甲、乙两人沿同一条路从地到地.甲、乙两人离开地的距离(单位:km)与时间(单位:h)之间的关系如图所示.下列说法错误的是( )
A.乙比甲提前出发1h B.甲行驶的速度为40km/h
C.3h时,甲、乙两人相距80km D.0.75h或1.125h时,乙比甲多行驶10km
第Ⅱ卷(非选择题 70分)
二、填空题(5小题,每小题4分,共计20分)
1、如图,直线与的交点的横坐标为2,则不等式的自变量的取值范围是________.
2、如图,在平面直角坐标系中,点A,A1,A2,…在x轴上,分别以OA,AA1,A1A2,…为边在第一象限作等边△OAP,等边△AA1P1,等边△A1A2P2,…,且A点坐标为(2,0),直线y=kx+(k>0)经过点P,P1,P2,…,则点P2022的纵坐标为______.
3、已知 M(1, a )和 N(2, b )是一次函数 y=-x+1 图像上的两点,则 a______b (填“>”、“<”或“=”).
4、画出函数y=-6x与y=-6x+5的图象.
(1)这两个函数的图象形状都是______,并且倾斜程度______.
(2)函数y=-6x的图象经过______,函数y=-6x+5的图象与y轴交于点______,即它可以看作由直线y=-6x向______平移______个单位长度而得到.
5、如图,一次函数x+4的图像与x轴交于点A,与y轴交于点B,C是x轴上的一动点,连接BC,将沿BC所在的直线折叠,当点A落在y轴上时,点C的坐标为_____.
三、解答题(5小题,每小题10分,共计50分)
1、国庆期间,小龚自驾游去了离家156千米的月亮湾,如图是小龚离家的距离y(千米)与汽车行驶时间x(小时)之间的函数图象.
(1)求小龚出发36分钟时,离家的距离;
(2)求出AB段的图象的函数解析式;
(3)若小龚离目的地还有72千米,求小龚行驶了多少小时.
2、平面直角坐标系内有一平行四边形点,,,,有一次函数的图象过点
(1)若此一次函数图象经过平行四边形边的中点,求的值
(2)若此一次函数图象与平行四边形始终有两个交点,求出的取值范围
3、已知直线y=﹣x+2与x轴、y轴分别交于点A和点B,点C是x轴上一定点,其坐标为C(1,0),一个动点P从原点出发沿O﹣B﹣A﹣C﹣O方向移动,连接PC.
(1)当线段PC与线段AB平行时,求点P的坐标,并求此时△POC的面积与△AOB的面积的比值.
(2)当△AOB被线段PC分成的两部分面积相等时,求线段PC所在直线的解析式;
(3)若△AOB被线段PC分成的两部分面积比为1:5时,求线段PC所在直线的解析式.
4、如图,在平面直角坐标系中,点,,,且,,满足关于,的二元一次方程,直线经过点,且直线轴,点为直线上的一个动点,连接,,.
(1)求,,的值;
(2)在点运动的过程中,当三角形的面积等于三角形的面积的时,求的值;
(3)在点运动的过程中,当取得最小值时,直接写出的值.
5、甲、乙两人沿同一直道从A地去B地.已知A,B两地相距9000m,甲的步行速度为100m/min,他每走半个小时就休息15min,经过2小时到达目的地.乙的步行速度始终不变,他在途中不休息,在整个行程中,甲离A地的距离(单位:m)与时间x(单位:min)之间的函数关系如图所示(甲、乙同时出发,且同时到达目的地).
(1)在图中画出乙离A地的距离(单位:m)与时间x之间的函数图象;
(2)求甲、乙两人在途中相遇的时间.
-参考答案-
一、单选题
1、C
【解析】
【分析】
先确定点D关于直线AO的对称点E(0,2),确定直线CE的解析式,直线AO的解析式,两个解析式的交点就是所求.
【详解】
∵∠OBA=90°,A(4,4),且,点D为OB的中点,
∴点D(2,0),AC=1,BC=3,点C(4,3),
设直线AO的解析式为y=kx,
∴4=4k,
解得k=1,
∴直线AO的解析式为y=x,
过点D作DE⊥AO,交y轴于点E,交AO于点F,
∵∠OBA=90°,A(4,4),
∴∠AOE=∠AOB=45°,
∴∠OED=∠ODE=45°,OE=OD,
∴DF=FE,
∴点E是点D关于直线AO的对称点,
∴点E(0,2),
连接CE,交AO于点P,此时,点P是四边形PCBD周长最小的位置,
设CE的解析式为y=mx+n,
∴,
解得,
∴直线CE的解析式为y=x+2,
∴y=14x+2y=x,
解得,
∴使四边形PDBC周长最小的点P的坐标为(,),
故选C.
【点睛】
本题考查了一次函数的解析式,将军饮马河原理,熟练掌握待定系数法和将军饮马河原理是解题的关键.
2、C
【解析】
【分析】
利用一次函数的增减性性质判定即可.
【详解】
∵直线y=-2x+3的k=-2<0,
∴y随x的增大而减小,
∵-2<3,
∴,
故选C.
【点睛】
本题考查了一次函数的增减性,熟练掌握性质是解题的关键.
3、C
【解析】
【分析】
根据函数图象结合题意,可知两地的距离为,此时甲行驶了1小时,进而求得甲的速度,即可判断A、D选项,根据总路程除以速度即可求得甲行驶到地所需要的时间,根据货车行驶的时间和路程结合图像可得第小时时货车与甲相遇,据此判断B选项,求得相遇时,甲距离地的距离,进而根据货车行驶的路程除以时间即可求得货车的速度,进而求得货车到达地所需要的时间.
【详解】
解:两地的距离为,
故A选项正确,不符合题意;
故D选项正确,不符合题意;
根据货车行驶的时间和路程结合图像可得第小时时货车与甲相遇,
则
即货车返回途中与甲相遇后又经过甲到地
故B选项正确,
相遇时为第4小时,此时甲行驶了,
货车行驶了
则货车的速度为
则货车到达地所需的时间为
即第小时
故甲行驶小时时货车到达地
故C选项不正确
故选C
【点睛】
本题考查了一次函数的应用,弄清楚函数图象中各拐点的意义是解题的关键.
4、C
【解析】
【分析】
求出正比函数的解析式,k值的绝对值表示车的速度;横轴上两个时间点的差表示乙走完全程所用时间,求出一次函数的解析式,确定它与正比例函数的交点坐标,横坐标即为二车相遇时间.
【详解】
设甲的解析式为y=kx,
∴6k=300,
解得k=50,
∴=50x,
∴甲车的速度为,
∴①正确;
∵乙晚出发2小时,
∴乙车用了5-2=3(h)到达城,
∴②错误;
设,
∴,
∴,
∴,
∵,
∴,
即甲行驶4小时,乙追上甲,
∴③正确;
故选C.
【点睛】
本题考查了待定系数法确定函数的解析式,函数图像,交点坐标的确定,解二元一次方程组,熟练掌握待定系数法,准确求交点的坐标是解题的关键.
5、A
【解析】
【分析】
先根据一次函数的解析式判断出函数的增减性,再根据x1>x2即可得出结论.
【详解】
∵正比例函数y=3x中,k=3>0,
∴y随x的增大而增大,
∵x1>x2,
∴y1>y2.
故选:A.
【点睛】
本题考查的是一次函数图象上点的坐标特征,熟练掌握正比例函数的增减性与x的系数的关系是解题的关键.
6、B
【解析】
【分析】
当不动时,距离300千米,就是A,B两地的距离;甲匀速运动,走完全程用时5小时,乙走完全程用时3小时,确定甲,乙的函数解析式,求交点坐标;分甲出发,乙未动,距离为50千米,甲出发,乙出发,且甲在前50距离50千米,甲在后距离50千米,乙到大时距离为50千米四种情形计算即可.
【详解】
∵(0,300)表示不动时,距离300千米,就是A,B两地的距离,
∴①正确;
∵甲匀速运动,走完全程用时5小时,乙走完全程用时3小时,
∴乙车比甲车晚出发1小时,却早到1小时;
∴②正确;
设,
∴300=5m,
解得m=60,
∴;
设,
∴
解得,
∴;
∴
解得t=2.5,
∴2.5-1=1.5,
∴乙车出发后1.5小时追上甲车;
∴③错误;
当乙未出发时,,
解得t=;
当乙出发,且在甲后面时,,
解得t=;
当乙出发,且在甲前面时,,
解得t=;
当乙到大目的地,甲自己行走时,,
解得t=;
∴④错误;
故选B.
【点睛】
本题考查了函数的图像,一次函数的解析式确定,交点的意义,熟练掌握待定系数法,准确捕获图像信息是解题的关键.
7、B
【解析】
【分析】
根据菜园的三边的和为24m,进而得出一个x与y的关系式,然后根据题意可得关于x的不等式,求解即可确定x的取值范围.
【详解】
解:根据题意得,菜园三边长度的和为24m,
即,
所以,
由y>0得,,
解得,
当时,即,
解得,
∴,
故选:B.
【点睛】
题目主要考查一次函数的运用及根据条件得出不等式求解,理解题意,利用不等式得出自变量的取值范围是解题关键.
8、D
【解析】
【分析】
根据一次函数的性质对各选项进行逐一判断即可.
【详解】
解:A、当x=−2,y=−2x+1=−2×(−2)+1=5,则点(−2,1)不在函数y=−2x+1图象上,故本选项错误;
B、由于k=−2<0,则y随x增大而减小,故本选项错误;
C、由于k=−2<0,则函数y=−2x+1的图象必过第二、四象限,b=1>0,图象与y轴的交点在x的上方,则图象还过第一象限,故本选项错误;
D、由于直线y=−2x+1与直线y=−2x的倾斜角相等且与y轴交于不同的点,所以它们相互平行,故本选项正确;
故选:D.
【点睛】
本题考查了一次函数y=kx+b(k≠0)的性质:当k>0,图象经过第一、三象限,y随x增大而增大;当k<0,图象经过第二、四象限,y随x增大而减小;当b>0,图象与y轴的交点在x的上方;当b=0,图象经过原点;当b<0,图象与y轴的交点在x的下方.
9、B
【解析】
【分析】
根据一次函数解析变形可得,进而判断即可.
【详解】
解:∵
∴
A. ,,则在一次函数的图象上 ,不符合题意;
B. ,,则不在一次函数的图象上,符合题意;
C. ,,则在一次函数的图象上 ,不符合题意;
D. ,,,则在一次函数的图象上 ,不符合题意;
故选B
【点睛】
本题考查了一次函数的性质,满足一次函数解析式的点都在一次函数图象上,掌握一次函数的性质是解题的关键.
10、C
【解析】
【分析】
根据题意和函数图象中的数据,可以判断各个小题中的结论是否正确,从而可以解答本题.
【详解】
解:A、根据图象可得乙比甲提前出发1h,故选项A说法正确,不符合题意;
B、甲行驶的速度为20÷(1.5-1)=40km/h,故选项B说法正确,不符合题意;
C、乙行驶的速度为
∴3h时,甲、乙两人相距,故选项C说法错误,符合题意;
D、;
∴0.75h或1.125h时,乙比甲多行驶10km,
∴选项D说法正确,不符合题意.
故选C.
【点睛】
本题考查一次函数的应用,解答本题的关键是明确题意,利用数形结合的思想解答
二、填空题
1、
【解析】
【分析】
利用函数图象得出直线y=k1x+b1在直线y=k2x+b2上方和交点的x的取值范围,即得出结论.
【详解】
解:∵直线y1=k1x+b1在直线y2=k2x+b2在同一平面直角坐标系中的交点C的横坐标为2,
∴x≥2时,直线y1=k1x+b1与直线y2=k2x+b2在上方交于同一点,
故答案为x≥2.
【点睛】
本题考查了一次函数与一元一次不等式,根据函数图象在上方的函数值比函数图象在下方的函数值大,利用数形结合求解是解题的关键.
2、32023
【解析】
【分析】
先利用等边三角形的性质求得P点坐标为(,3),再求得直线的解析式为y=x+,设P1点坐标为(x,x+),利用含30度角的直角三角形的性质求得P1点的纵坐标为9=32,找出规律,即可求解.
【详解】
解:过点P作PD⊥轴于点D,
∵等边△OAP,且A点坐标为(2,0),
∴OA= OP=2,OD=DA=,∠POD=60°,
∴PD=3,
∴P点坐标为(,3),
∵直线y=kx+(k>0)经过点P,
∴3=k+,
解得:k=,
∴直线的解析式为y=x+,
过点P1作PE⊥轴于点E,
设P1点坐标为(x,x+),
∴AE=x-2,P1E=x+,
∵∠P1AE=60°,∠AP1E=30°,
∴P1E=AE,
∴x+=(x-2),
解得:x=5,
∴P1点的纵坐标为9=32,
同理,P2点的纵坐标为27=33,
,
∴点P2022的纵坐标为32023.
故答案为:32023.
【点睛】
本题是有关点的坐标的规律题,考查了待定系数法求直线的解析式,等边三角形的性质,勾股定理等,利用数形结合的思想解决问题,与含30度角的直角三角形相结合,使问题得以解决.
3、>
【解析】
【分析】
由M(1,a)和N(2,b)是一次函数y=-x+1图象上的两点,利用一次函数图象上点的坐标特征可求出a,b的值,比较后即可得出结论.
【详解】
解:当x=1时,a=-1+1=0;
当x=2时,b=-2+1=-1.
∵0>-1,
∴a>b.
故答案为:>.
【点睛】
本题考查了一次函数图象上点的坐标特征,牢记直线上任意一点的坐标都满足函数关系式y=kx+b是解题的关键.
4、 一条直线 相同 原点 (0,5) 上 5
【解析】
略
5、(12,0)或(-,0)
【解析】
【分析】
由一次函数解析式求出点A、B的坐标,进而求得OA、OB、AB,分点C在x轴正半轴和在x轴负半轴,利用折叠性质和勾股定理求解OC即可.
【详解】
解:当x=0时,y=4,当y=0时,x=-3,
∴A(-3,0),B(0,4),
∴OA=3,OB=4,
∴,
设点A的对应点为A1,OC=x,
当点C在x轴正半轴时,如图,
根据轴对称性质得:BA1=AB=5,OA1=5+4=9,CA1=AC=3+x,
在Rt△A1OC中,由勾股定理得:,
解得:x=12,即OC=12,
∴点C坐标为(12,0);
当点C在x轴负半轴时,如图,
根据折叠性质得:BA1=AB=5,OA1=5-4=1,CA1=AC=3-x,
在Rt△A1OC中,由勾股定理得:,
解得:,即OC= ,
∴点C的坐标为(-,0),
综上,点C的坐标为(12,0)或(-,0),
故答案为:(12,0)或(-,0).
【点睛】
本题考查一次函数与坐标轴的交点问题、折叠性质、勾股定理、坐标与图形,熟练掌握轴对称性质,利用分类讨论思想解决问题是解答的关键.
三、解答题
1、 (1)36千米
(2)y=90x-24 (0.8≤x≤2)
(3)1.2小时
【解析】
【分析】
(1)由OA段可求得此时小龚驾车的速度,从而可求得36分钟离家的距离;
(2)用待定系数法.AB段过点A与B,把这两点的坐标代入所设函数解析式中即可求得函数解析式;
(3)由题意可得小龚离家的距离,根据(2)中求得的函数解析式的函数值,解方程即可求得x的值,从而求得小龚行驶的时间.
(1)
在OA段,小龚行驶的速度为:48÷0.8=60(千米/时),36分钟=0.6小时,则小龚出发36分钟时,离家的距离为60×0.6=36(千米);
(2)
由图象知: ,
设AB段的函数解析式为:
把A、B两点的坐标分别代入上式得:
解得:
∴AB段的函数解析式为(0.8≤x≤2)
(3)
由图象知,当小龚离目的地还有72千米时,他已行驶了156−72=84(千米)
所以在中,当y=84时,即,得
即小龚离目的地还有72千米,小龚行驶了1.2小时.
【点睛】
本题考查了一次函数(正比例函数)的图象与性质,待定系数法求函数解析式,已知函数值求自变量的值等知识,数形结合是本题的关键.
2、 (1)k=;
(2)−1<k<,且k≠0.
【解析】
【分析】
(1)设OA的中点为M,根据M、P两点的坐标,运用待定系数法求得k的值;
(2)当一次函数y=kx+b的图象过B、P两点时,求得k的值;当一次函数y=kx+b的图象过A、P两点时,求得k的值,最后判断k的取值范围.
(1)
解:设OA的中点为M,
∵O(0,0),A(4,0),
∴OA=4,
∴OM=2,
∴M(2,0),
∵一次函数y=kx+b的图象过M(2,0),P(6,1)两点,
∴,
解得:k=;
(2)
如图,由一次函数y=kx+b的图象过定点P,作直线BP,AP与平行四边形只有一个交点,由于直线与平行四边形有两个交点,所以直线应在直线BP,AP之间,
当一次函数y=kx+b的图象过B、P两点时,
代入表达式y=kx+b得到:,
解得:k=-1,
当一次函数y=kx+b的图象过A、P两点时,
代入表达式y=kx+b得到:,
解得:k=,
所以−1<k<,
由于要满足一次函数的存在性,
所以−1<k<,且k≠0.
【点睛】
本题考查了运用待定系数法求一次函数解析式,解题时注意:求正比例函数y=kx,只要一对x,y的值;而求一次函数y=kx+b,则需要两组x,y的值.
3、 (1)P(0,1);△POC的面积与△AOB的面积的比值为;
(2)y=﹣2x+2;
(3)线段PC所在直线的解析式为:y=4x﹣4或y=x+
【解析】
【分析】
(1)先求出A、B坐标,进而求出△ABC的面积,再利用待定系数法求得PC所在直线解析式,进而求得点P坐标和△POC的面积即可;
(2)根据三角形一边上的中线将三角形面积平分可得点P与点B重合,此时P(0,2),利用待定系数法求得PC所在直线解析式即可;
(3)分①当点P在线段AB上时和②当点P在线段OB上时两种情况,根据三角形面积公式求出点P纵坐标,进而求得点P坐标,再利用待定系数法求PC所在直线的解析式即可.
(1)
解:∵直线y=﹣x+2与x轴、y轴分别交于点A和点B,
∴A(2,0),B(0,2),
∴OA=OB=2,
∴∠OAB=∠OBA=45°,
∴.
当线段PC与线段AB平行时,可画出图形,
设PC所在直线的解析式为y=﹣x+m,
∵C(1,0),
∴﹣1+m=0,解得,m=1,
∴PC所在直线的解析式为:y=﹣x+1,
∴P(0,1);
此时,,
∴.
即P(0,1);△POC的面积与△AOB的面积的比值为;
(2)
解:由题意可知,点C是线段OA的中点,当△AOB被线段PC分成的两部分面积相等时,点P与点B重合,此时P(0,2),
设PC所在直线的解析式为:y=kx+b,
∴,解得,,
∴线段PC所在直线的解析式为:y=﹣2x+2.
(3)
解:根据题意,需要分类讨论:
①当点P在线段AB上时,如图所示,此时,
过点P作PD⊥x轴于点D,
∴,解得:,
∴AD=PD=,
∴OD=OA﹣AD=2﹣=,
∴P(,),
设线段PC所在直线的解析式:y=k1x+b1,
∴,解得,,
∴线段PC所在直线的解析式:y=4x﹣4;
②当点P在线段OB上时,如图所示,此时,
∴,解得,,
∴P(0,),
设线段PC所在直线的解析式:y=k2x+b2,
∴,解得,,
∴线段PC所在直线的解析式:y=x+;
综上可知,线段PC所在直线的解析式为:y=4x﹣4或y=x+.
【点睛】
本题考查待定系数法求一次函数的解析式、一次函数图象与坐标轴交点问题、坐标与图形、三角形的面积公式、三角形的中线性质,熟练掌握待定系数法求一次函数的解析式,利用数形结合和分类讨论思想求解是解答的关键.
4、 (1),,
(2)或
(3)
【解析】
【分析】
(1)根据二次根式有意义的条件求出c,根据二元一次方程的定义列出方程组,解方程组求出a、b;
(2)根据三角形的面积公式求出△AOB的面积,根据S△ABD=×S△AOB求出S△ABD,根据三角形的面积公式计算,得到答案;
(3)利用待定系数法求出直线AB的解析式,进而求出m.
(1)
由和可知,,,
,
由二元一次方程的定义,得,
解得:,
,,;
(2)
设与直线交于,连接,
由(1)可知:,,,
,
,
,
,即,
解得:,
,
,
解得:或;
(3)
当取得最小值时,点在上,
设直线的解析式为:,
则,
解得:,
直线的解析式为:,
当时,,
的值为.
【点睛】
本题考查的是二次根式有意义的条件、二元一次方程的定义、三角形的面积计算、函数解析式的确定,掌握待定系数法求一次函数解析式的一般步骤是解题的关键.
5、 (1)图象见解析;
(2)甲、乙两人在途中相遇的时间为40分钟,60分钟和80分钟的时候.
【解析】
【分析】
(1)根据乙的步行速度始终不变,且他在途中不休息,即直接连接原点和点(120,9000)即可;
(2)根据图象可判断甲、乙两人在途中相遇3次,分段计算,利用待定系数法结合图象即可求出相遇的时间.
(1)
乙离A地的距离(单位:m)与时间x之间的函数图像,如图即是.
(2)
根据题意结合图象可知甲、乙两人在途中相遇3次.
如图,第一次相遇在AB段,第二次相遇在BC段,第三次相遇在CD段,
根据题意可设的解析式为:,
∴,
解得:,
∴的解析式为.
∵甲的步行速度为100m/min,他每走半个小时就休息15min,
∴甲第一次休息时走了米,
对于,当时,即,
解得:.
故第一次相遇的时间为40分钟的时候;
设BC段的解析式为:,
根据题意可知B(45,3000),D (75,6000).
∴,
解得:,
故BC段的解析式为:.
相遇时即,故有,
解得:.
故第二次相遇的时间为60分钟的时候;
对于,当时,即,
解得:.
故第三次相遇的时间为80分钟的时候;
综上,甲、乙两人在途中相遇的时间为40分钟,60分钟和80分钟的时候.
【点睛】
本题考查一次函数的实际应用.理解题意,掌握利用待定系数法求函数解析式是解答本题的关键.
相关试卷
这是一份冀教版八年级下册第二十一章 一次函数综合与测试同步测试题,共31页。
这是一份冀教版八年级下册第二十一章 一次函数综合与测试同步训练题,共29页。试卷主要包含了若直线y=kx+b经过一,点A等内容,欢迎下载使用。
这是一份冀教版八年级下册第二十一章 一次函数综合与测试课后复习题,共26页。试卷主要包含了如图,已知点K为直线l,,两地相距80km,甲等内容,欢迎下载使用。
![文档详情页底部广告位](http://img.51jiaoxi.com/images/257d7bc79dd514896def3dc0b2e3f598.jpg)