搜索
    上传资料 赚现金
    英语朗读宝

    难点详解冀教版八年级数学下册第二十一章一次函数重点解析练习题(精选)

    难点详解冀教版八年级数学下册第二十一章一次函数重点解析练习题(精选)第1页
    难点详解冀教版八年级数学下册第二十一章一次函数重点解析练习题(精选)第2页
    难点详解冀教版八年级数学下册第二十一章一次函数重点解析练习题(精选)第3页
    还剩27页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    初中数学冀教版八年级下册第二十一章 一次函数综合与测试课时练习

    展开

    这是一份初中数学冀教版八年级下册第二十一章 一次函数综合与测试课时练习,共30页。
    八年级数学下册第二十一章一次函数重点解析
    考试时间:90分钟;命题人:数学教研组
    考生注意:
    1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
    2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
    3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
    第I卷(选择题 30分)
    一、单选题(10小题,每小题3分,共计30分)
    1、一次函数的大致图象是( )
    A. B.
    C. D.
    2、某种摩托车的油箱最多可以储油10升,李师傅记录了他的摩托车加满油后,油箱中的剩余油量y(升)与摩托车行驶路程x(千米)的关系,则当0≤x≤500时,y与x的函数关系是( ).
    x(千米)
    0
    100
    150
    300
    450
    500
    y(升)
    10
    8
    7
    4
    1
    0

    A.正比例函数关系 B.一次函数关系
    C.二次函数关系 D.反比例函数关系
    3、下列问题中,两个变量成正比例的是(  )
    A.圆的面积S与它的半径r
    B.三角形面积一定时,某一边a和该边上的高h
    C.正方形的周长C与它的边长a
    D.周长不变的长方形的长a与宽b
    4、如图,直线y=kx+b与x轴的交点的坐标是(﹣3,0),那么关于x的不等式kx+b>0的解集是(  )

    A.x>﹣3 B.x<﹣3 C.x>0 D.x<0
    5、AB两地相距20km,甲从A地出发向B地前进,乙从B地出发向A地前进,两人沿同一直线同时出发,甲先以8km/h的速度前进1小时,然后减慢速度继续匀速前进,甲乙两人离A地的距离s(km)与时间t(h)的关系如图所示,则甲出发( )小时后与乙相遇.

    A.1.5 B.2 C.2.5 D.3
    6、一次函数y1=kx+b与y2=mx+n的部分自变量和对应函数值如表:
    x

    ﹣2
    ﹣1
    0
    1
    2

    y1

    1
    2
    3
    4
    5


    x

    ﹣2
    ﹣1
    0
    1
    2

    y2

    5
    2
    ﹣1
    ﹣4
    ﹣7

    则关于x的不等式kx+b>mx+n的解集是(  )
    A.x>0 B.x<0 C.x<﹣1 D.x>﹣1
    7、如图,已知点是一次函数上的一个点,则下列判断正确的是( )

    A. B.y随x的增大而增大
    C.当时, D.关于x的方程的解是
    8、无论m为何实数,直线y=-x+4与y=x+2m的交点不可能在( )
    A.第一象限 B.第二象限
    C.第三象限 D.第四象限
    9、已知一次函数y=k1x+b1和一次函数y1=k2x+b2的自变量x与因变量y1,y2的部分对应数值如表所示,则关于x、y的二元一次方程组的解为(  )
    x

    ﹣2
    ﹣1
    0
    1
    2

    y1

    ﹣1
    0
    1
    2
    3

    y2

    ﹣5
    ﹣3
    ﹣1
    1
    3

    A. B. C. D.
    10、如图,李爷爷要围一个长方形菜园ABCD,菜园的一边利用足够长的墙,用篱笆围成的另外三边的总长恰好为24m,设边BC的长为xm,边AB的长为ym(x>y).则y与x之间的函数表达式为(  )

    A.y=﹣2x+24(0<x<12) B.y=﹣x+12(8<x<24)
    C.y=2x﹣24(0<x<12) D.y=x﹣12(8<x<24)
    第Ⅱ卷(非选择题 70分)
    二、填空题(5小题,每小题4分,共计20分)
    1、如图,一次函数x+4的图像与x轴交于点A,与y轴交于点B,C是x轴上的一动点,连接BC,将沿BC所在的直线折叠,当点A落在y轴上时,点C的坐标为_____.

    2、在直角坐标系中,等腰直角三角形、、、、按如图所示的方式放置,其中点、、、、均在一次函数的图象上,点、、、、均在轴上.若点的坐标为,点的坐标为,则点的坐标为___.

    3、当光线射到x轴进行反射,如果反射的路径经过点A(0,1)和点B(3,4),则入射光线所在直线的解析式为____________.
    4、一条笔直的公路上顺次有A,B,C三地,甲车从B地出发匀速向C地行驶,同时乙车从B地出发匀速向A地行驶,到达A地并在A地停留1小时后,调头将速度提高了50% 向C地行驶,两车到达C地均停止运动.在两车行驶的过程中,甲乙两车之间的距离s(千米)与行驶时间t (小时)之间的函数图象如图所示,当甲乙两车第一次相遇时,距A地的距离为_________ 千米.

    5、在平面直角坐标系xOy中,点A点B的坐标分别是(4,8),(12,0),则△AOB的重心G的坐标是 _____.
    三、解答题(5小题,每小题10分,共计50分)
    1、已知一次函数在轴上的截距为2,且随的增大而减小,求一次函数的解析式,并求出它的图像与坐标轴围成的三角形的面积
    2、如图1,在平面直角坐标系中,直线分别与轴、轴交于、两点,直线分别与轴、轴交于、两点,点是上一点.

    (1)求、的值;
    (2)试判断线段与线段之间的关系,并说明理由;
    (3)如图2,若点是轴上一点,点是直线上一动点,点是直线上一动点,当是以点为直角顶点的等腰三角形时,请直接写出相应的点、的坐标.
    3、已知一次函数 y=-x+2.
    (1)求这个函数的图像与两条坐标轴的交点坐标;
    (2)在平面直角坐标系中画出这个函数的图像;
    (3)结合函数图像回答问题:
    ①当 x>0 时,y 的取值范围是 ;
    ②当 y<0 时,x 的取值范围是 .
    4、为了贯彻落实市委市政府提出的“精准扶贫”精神.某校特制定了一系列关于帮扶A,B两贫困村的计划.现决定从某地运送168箱小鸡到A,B两村养殖,若用大、小货车共18辆,则恰好能一次性运完这批小鸡,已知这两种大、小货车的载货能力分别为10箱/辆和8箱/辆,其运往A、B两村的运费如下表:
    目的地车型
    A村(元/辆)
    B村(元/辆)
    大货车
    80
    90
    小货车
    40
    60
    (1)试求这18辆车中大、小货车各多少辆?
    (2)现安排其中10辆货车前往A村,其余货车前往B村,设前往4村的大货车为x辆,前往A、B两村总费用为y元,试求出y与x的函数表达式,并直接写出自变量取值范围;
    (3)在(2)的条件下,若运往A村的小鸡不少于96箱,请你写出使总费用最少的货车调配方案,并求出最少费用.
    5、甲、乙两车从M地出发,沿同一路线驶向N地,甲车先出发匀速驶向N地,30分钟后,乙车出发,匀速行驶一段时间后,在途中的货站装货耗时半小时,由于满载货物,为了行驶安全,速度减少了40km/h,结果两车同时到达N地,甲乙两车距N地的路程y(km)与乙车行驶时间x(h)

    (1)a= ,甲的速度是 km/h.
    (2)求线段AD对应的函数表达式.
    (3)直接写出甲出发多长时间,甲乙两车相距10km.

    -参考答案-
    一、单选题
    1、A
    【解析】
    【分析】
    由知直线必过,据此求解可得.
    【详解】
    解:,
    当时,,
    则直线必过,
    如图满足条件的大致图象是:

    故选:A.
    【点睛】
    本题主要考查一次函数的图象,解题的关键是掌握一次函数的图象性质:①当,时,图象过一、二、三象限;②当,时,图象过一、三、四象限;③当,时,图象过一、二、四象限;④当,时,图象过二、三、四象限.
    2、B
    【解析】
    【分析】
    根据表格数据,描点、连线画出函数的图象,根据函数图象进行判断即可
    【详解】
    根据表格数据,描点、连线画出函数的图象如图:

    故y与x的函数关系是一次函数.
    故选B.
    【点睛】
    本题考查了画一次函数图象,掌握一次函数图象的性质是解题的关键.
    3、C
    【解析】
    【分析】
    分别列出每个选项两个变量的函数关系式,再根据函数关系式逐一判断即可.
    【详解】
    解: 所以圆的面积S与它的半径r不成正比例,故A不符合题意;
    所以三角形面积一定时,某一边a和该边上的高h不成正比例,故B不符合题意;
    所以正方形的周长C与它的边长a成正比例,故C符合题意;

    所以周长不变的长方形的长a与宽b不成正比例,故D不符合题意;
    故选C
    【点睛】
    本题考查的是两个变量成正比例,掌握“正比例函数的特点”是解本题的关键.
    4、A
    【解析】
    【分析】
    根据图象直接解答即可.
    【详解】
    ∵直线y=kx+b与x轴交点坐标为(﹣3,0),
    ∴由图象可知,当x>﹣3时,y>0,
    ∴不等式kx+b>0的解集是x>﹣3.
    故选:A.
    【点睛】
    此题考查了一次函数图象与不等式的关系,不等式的解集即为一次函数的函数值大于零、等于零或小于零,正确理解二者之间的关系是解题的关键.
    5、B
    【解析】
    【分析】
    根据题意结合图象分别求出甲减速后的速度已经乙的速度,再列方程解答即可.
    【详解】
    解:甲减速后的速度为:(20﹣8)÷(4﹣1)=4(km/h),乙的速度为:20÷5=4(km/h),
    设甲出发x小时后与乙相遇,
    根据题意得8+4(x﹣1)+4x=20,
    解得x=2.
    即甲出发2小时后与乙相遇.
    故选:B.
    【点睛】
    本题考查了一次函数的应用,解题的关键是读懂图象信息,灵活应用速度、路程、时间之间的关系解决问题.
    6、D
    【解析】
    【分析】
    根据统计表确定两个函数的增减性以及函数的交点,然后根据增减性判断.
    【详解】
    解:根据表可得y1=kx+b中y随x的增大而增大;
    y2=mx+n中y随x的增大而减小,且两个函数的交点坐标是(﹣1,2).
    则当x>﹣1时,kx+b>mx+n.
    故选:D.
    【点睛】
    本题考查了一次函数与一元一次不等式,一次函数的性质,正确确定增减性以及交点坐标是关键.
    7、D
    【解析】
    【分析】
    根据已知函数图象可得,是递减函数,即可判断A、B选项,根据时的函数图象可知的值不确定,即可判断C选项,将B点坐标代入解析式,可得进而即可判断D
    【详解】
    A.该一次函数经过一、二、四象限
    , y随x的增大而减小,
    故A,B不正确;
    C. 如图,设一次函数与轴交于点

    则当时,,故C不正确
    D. 将点坐标代入解析式,得
    关于x的方程的解是
    故D选项正确
    故选D
    【点睛】
    本题考查了一次函数的图象与性质,一次函数与二元一次方程组的解的关系,掌握一次函数的图象与性质是解题的关键.
    8、C
    【解析】
    【分析】
    通过一次函数中k和b的符号决定了直线经过的象限来解决问题.
    【详解】
    解:因为y=-x+4中,
    k=-1<0,b=4>0,
    ∴直线y=-x+4经过第一、二、四象限,
    所以无论m为何实数,直线y=-x+4与y=x+2m的交点不可能在第三象限.
    故选:C.
    【点睛】
    本题考查了一次函数中k和b的符号,k>0,直线经过第一、三象限;k<0,直线经过第二、四象限.
    9、C
    【解析】
    【分析】
    利用方程组的解就是两个相应的一次函数图象的交点坐标解决问题.
    【详解】
    解:由表格可知,一次函数y1=k1x+b1和一次函数y2=k2x+b2的图象都经过点(2,3),
    ∴一次函数y1=k1x与y=k2x+b的图象的交点坐标为(2,3),
    ∴关于x,y的二元一次方程组的解为.
    故选:C.
    【点睛】
    本题考查了一次函数图像交点坐标与方程组解的关系:对于函数y1=k1x+b1,y2=k2x+b2,其图象的交点坐标(x,y)中x,y的值是方程组的解.
    10、B
    【解析】
    【分析】
    根据菜园的三边的和为24m,进而得出一个x与y的关系式,然后根据题意可得关于x的不等式,求解即可确定x的取值范围.
    【详解】
    解:根据题意得,菜园三边长度的和为24m,
    即,
    所以,
    由y>0得,,
    解得,
    当时,即,
    解得,
    ∴,
    故选:B.
    【点睛】
    题目主要考查一次函数的运用及根据条件得出不等式求解,理解题意,利用不等式得出自变量的取值范围是解题关键.
    二、填空题
    1、(12,0)或(-,0)
    【解析】
    【分析】
    由一次函数解析式求出点A、B的坐标,进而求得OA、OB、AB,分点C在x轴正半轴和在x轴负半轴,利用折叠性质和勾股定理求解OC即可.
    【详解】
    解:当x=0时,y=4,当y=0时,x=-3,
    ∴A(-3,0),B(0,4),
    ∴OA=3,OB=4,
    ∴,
    设点A的对应点为A1,OC=x,
    当点C在x轴正半轴时,如图,
    根据轴对称性质得:BA1=AB=5,OA1=5+4=9,CA1=AC=3+x,
    在Rt△A1OC中,由勾股定理得:,
    解得:x=12,即OC=12,
    ∴点C坐标为(12,0);

    当点C在x轴负半轴时,如图,
    根据折叠性质得:BA1=AB=5,OA1=5-4=1,CA1=AC=3-x,
    在Rt△A1OC中,由勾股定理得:,
    解得:,即OC= ,
    ∴点C的坐标为(-,0),

    综上,点C的坐标为(12,0)或(-,0),
    故答案为:(12,0)或(-,0).
    【点睛】
    本题考查一次函数与坐标轴的交点问题、折叠性质、勾股定理、坐标与图形,熟练掌握轴对称性质,利用分类讨论思想解决问题是解答的关键.
    2、
    【解析】
    【分析】
    首先,根据等腰直角三角形的性质求得点A1、A2的坐标;然后,将点A1、A2的坐标代入一次函数解析式,利用待定系数法求得该直线方程是y=x+1;最后,利用等腰直角三角形的性质推知点Bn-1的坐标,然后将其横坐标代入直线方程y=x+1求得相应的y值,从而得到点An的坐标.
    【详解】
    解:如图,点的坐标为,点的坐标为,
    ,,则.
    △是等腰直角三角形,,

    点的坐标是.
    同理,在等腰直角△中,,,则.
    点、均在一次函数的图象上,
    ,解得,,
    该直线方程是.
    点,的横坐标相同,都是3,
    当时,,即,则,

    同理,,

    ,,
    当时,,
    即点的坐标为,.
    故答案为,.

    【点睛】
    本题考查了一次函数图象上点的坐标特点,涉及到的知识点有待定系数法求一次函数解析式,一次函数图象上点的坐标特征以及等腰直角三角形的性质.解答该题的难点是找出点Bn的坐标的规律.
    3、
    【解析】
    【分析】
    根据题意得:入射光线所在直线和反射光线所在直线关于 轴对称,可得入射光线所在直线经过点A(0,-1)和点B(3,-4),即可求解.
    【详解】
    解:根据题意得:入射光线所在直线和反射光线所在直线关于 轴对称,
    ∵反射的路径经过点A(0,1)和点B(3,4),
    ∴入射光线所在直线经过点A(0,-1)和点B(3,-4),
    设入射光线所在直线的解析式为 ,
    根据题意得: ,解得: ,
    ∴入射光线所在直线的解析式为 .
    故答案为:
    【点睛】
    本题主要考查了求一次函数解析式,根据题意得到入射光线所在直线和反射光线所在直线关于 轴对称是解题的关键.
    4、432
    【解析】
    【分析】
    设甲的速度为v甲,乙的速度为v乙,根据题意可得v甲+v乙=100①,可求出乙追上甲的时间为4.8h,根据题意可得4.8×(1+50%)V乙=2V乙+7.8V甲②,联立①②求出两车的速度即可解答.
    【详解】
    解:如图:

    设甲的速度为v甲,乙的速度为v乙,
    OD段:两人的速度和为:200÷2=100(km/h),
    即v甲+v乙=100①,
    此时乙休息1h,则E处的横坐标为:2+1=3,
    则乙用了:7.8-3=4.8(h)追上甲,
    则4.8×(1+50%)V乙=2V乙+7.8V甲②,
    联立①②得V甲=40,V乙=60,
    则第一次相遇是在7.8h时,
    距离A地:4.8×(1+50%)×60=432(km).
    故答案为:432.
    【点睛】
    本题主要考查了一次函数的应用.理解函数图象的点的坐标的实际意义,从而得到甲乙两车的行驶的距离和速度是解题的关键.
    5、##
    【解析】
    【分析】
    分别求得的中点的坐标,进而求得直线的交点坐标即可求得重心G的坐标.三角形的重心为三角形三条中线的交点.
    【详解】
    解:如图,点A点B的坐标分别是(4,8),(12,0),

    ,
    设直线的解析式为,


    解得
    直线的解析式为
    设直线的解析式为,


    解得
    直线的解析式为,
    则即为的重心

    解得

    故答案为:
    【点睛】
    本题考查了三角形重心的定义,待定系数法求一次函数解析式,中点坐标公式,求两直线解析式,掌握三角形的重心的定义是解题的关键.
    三、解答题
    1、y=-2x+2;1
    【解析】
    【分析】
    根据截距为2,且y随x的增大而减小即可确定k值,求出解析式即可求出面积.
    【详解】
    解:∵一次函数y=kx+k2-2在y轴上的截距为2,
    ∴|k2-2|=2,
    即k=±2或k'=0,
    又∵y随x的增大而减小,
    ∴k<0,
    即k=-2,
    ∴一次函数解析式为y=-2x+2;
    作出函数图象如图,

    设坐标轴原点为O,函数图象与x轴交于点B,与y轴交于点A,
    由解析式可知A(0,2),B(1,0),
    ∴OA=2,OB=1,
    ∴S△AOB=OA•OB=×2×1=1.
    【点睛】
    本题主要考查一次函数的知识,熟练掌握一次函数基本知识是解题的关键.
    2、 (1)2,1
    (2)垂直且相等,见解析
    (3)点、的坐标分别为、或、
    【解析】
    【分析】
    (1)分别求出点A,B的坐标,将点坐标代入求得b,从而得直线BD的解析式,再把点C坐标代入BD解析式,从而求出m的值;
    (2)分别求出,即可求解;
    (3)证明△MHQ≌△QGN(AAS),则MH=GQ,NG=QH,即可求解.
    (1)
    对于y=2x+2,令x=0,则y=2,令y=0,即y=2x+2=0,解得x=-1,
    故点A、B的坐标分别为(-1,0)、(0,2),
    ∵直线过点B,将点B坐标代入上式并解得:故b=2,
    则该直线的表达式为,
    当x=-3时,=1=m,
    即点C(-3,1);
    故答案为:2,1;
    (2)
    由(1)知,点A、B、C的坐标分别为(-1,0)、(0,2)、(-3,1),
    则,
    同理,,
    则AB2+AC2=BC2,
    故∠BAC为直角,且AC=BA
    故线段CA与线段BA之间的关系为垂直且相等;
    (3)
    当△MNQ是以点Q为直角顶点的等腰三角形时,∠MQN=90°,QM=QN,
    设点M、N的坐标分别为(s,2s+2)、(t,t+2),
    过点Q作x轴的平行线交过点M与y轴的平行线于点H,交过点N与y轴的平行线于点G,

    ∵∠NQG+∠MQH=90°,∠NQG+∠QNG=90°,
    ∴∠MQH=∠QNG,
    ∵∠MHQ=∠QGN=90°,MQ=NQ,
    ∴△MHQ≌△QGN(AAS),
    ∴MH=GQ,NG=QH,
    即2s+2-(-1)=-t(或-1-2s-2=-t),s=t+2-(-1)(或-s=t+2+1),
    解得:s=65t=-275或,
    所以,点、的坐标分别为、或、
    【点睛】
    本题考查的是一次函数综合运用,涉及到一次函数的性质、勾股定理的运用、三角形全等等,其中(3),要注意分类求解,避免遗漏.
    3、 (1)这个函数的图像与坐标轴的交点为(0,2),(2,0);
    (2)见解析
    (3)①y<2;②x>2
    【解析】
    【分析】
    (1)令x=0,求函数与y轴的交点,令y=0,求函数与x轴的交点;
    (2)两点法画出函数图象;
    (3)通过观察函数图象求解即可.
    (1)
    解:令x=0,则y=2,
    令y=0,则x=2,
    ∴这个函数的图像与坐标轴的交点为(0,2),(2,0);
    (2)
    解:这个函数的图像如图所示:

    (3)
    解:①观察图像可知:当x>0时,y<2,
    故答案为:y<2;
    ②观察图像可知:当y<0时,x>2,
    故答案为:x>2.
    【点睛】
    本题考查了一次函数的图象及性质,熟练掌握一次函数的图象及性质,数形结合解题是关键.
    4、 (1)大货车用12辆,小货车用6辆
    (2)(4≤x≤12,且x为整数)
    (3)8辆大货车、2辆小货车前往A村;4辆大货车、4辆小货车前往B村.最少运费为1320元
    【解析】
    【分析】
    (1)设大货车用a辆,小货车用b辆,根据大、小两种货车共18辆,运输168箱小鸡,列方程组求解;
    (2)设前往A村的大货车为x辆,则前往B村的大货车为(12- x)辆,前往A村的小货车为(10- x)辆,前往B村的小货车为[6-(10-x)]辆,根据表格所给运费,求出y与x的函数关系式;
    (3)结合已知条件,求x的取值范围,由(2)的函数关系式求使总运费最少的货车调配方案.
    (1)
    设大货车用a辆,小货车用b辆,根据题意得:
    解得:.
    ∴大货车用12辆,小货车用6辆.
    (2)
    设前往A村的大货车为x辆,则前往B村的大货车为(12- x)辆,前往A村的小货车为(10- x)辆,前往B村的小货车为[6-(10-x)]辆,
    y=80x+90(12-x)+40(10-x)+60[6-(10-x)]=10x+1240.

    4≤x≤12,且x为整数.
    (4≤x≤12,且x为整数)
    (3)
    由题意得:10x+8(10-x)≥96,解得:x≥8,
    又∵4≤x≤12,
    ∴8≤x≤12且为整数,
    ∵y=10x+1240,k=10>0,y随x的增大而增大,
    ∴当x=8时,y最小,
    最小值为y=10×8+1240=1320(元).
    答:使总运费最少的调配方案是:8辆大货车、2辆小货车前往A村;4辆大货车、4辆小货车前往B村.最少运费为1320元.
    【点睛】
    本题考查了二元一次方程组的应用,一次函数的应用,一元一次不等式组的应用,理解题意列出方程组、关系式、不等式是解题的关键.
    5、 (1)3.5小时,76;
    (2)线段AD对应的函数表达式为.
    (3)甲出发或或或小时,甲乙两车相距10km.
    【解析】
    【分析】
    (1)根据乙车3小时到货站,在货站装货耗时半小时,得出小时,甲提前30分钟,可求甲车行驶的时间为:0.5+4.5=5小时,然后甲车速度=千米/时即可;
    (2)利用待定系数法AD解析式为:,把AD两点坐标代入解析式得b=38380=4.5k+b解方程即可;
    (3)分两种情况,甲出发,乙未出发76t=10,乙出发后,设乙车的速度为xkm/h,利用行程列方程3x+(x-40)×1=380解方程求出x=105km/h,再用待定系数法,列方程,CD段乙车速度为105-40=65km/h,求出CD的解析式为,列方程,结合甲先行30分根据有理数加法求出甲所用时间即可.
    (1)
    解:∵3小时到货站,在货站装货耗时半小时,
    ∴小时,
    甲车行驶的时间为:0.5+4.5=5小时,
    甲车速度=千米/时,
    故答案为:3.5小时,76;
    (2)
    点A表示的路程为:76×0.5=38,
    设AD解析式为:,把AD两点坐标代入解析式得:
    b=38380=4.5k+b,
    解得:b=38k=76,
    线段AD对应的函数表达式为.

    (3)
    甲出发乙未出发,
    ∴76t=10,
    ∴t=,
    乙出发后;
    设乙车的速度为vkm/h,
    3v+(v-40)×1=380
    解得v=105km/h,
    ∴点B(3,315)
    设OB解析式为y=αx,代入坐标得:,
    ∴OB解析式为
    ∴,
    化简为:或,
    解得或,
    ∵CD段乙车速度为105-40=65km/h,
    设CD的解析式为代入点D坐标得,

    解得:,
    ∴CD的解析式为,
    ∴,
    解得:,
    ∵甲提前出发30分钟,
    ,,,
    甲出发或或或小时,甲乙两车相距10km.
    【点睛】
    本题考查待定系数法求一次函数解析式,利用函数图像获取信息,绝对值方程,一元一次方程,二元一次方程组解法,分类讨论思想的应用使问题完整解决是解题关键.

    相关试卷

    数学第二十一章 一次函数综合与测试一课一练:

    这是一份数学第二十一章 一次函数综合与测试一课一练,共25页。试卷主要包含了直线不经过点等内容,欢迎下载使用。

    冀教版八年级下册第二十一章 一次函数综合与测试达标测试:

    这是一份冀教版八年级下册第二十一章 一次函数综合与测试达标测试,共29页。试卷主要包含了下列不能表示是的函数的是等内容,欢迎下载使用。

    初中数学冀教版八年级下册第二十一章 一次函数综合与测试课时训练:

    这是一份初中数学冀教版八年级下册第二十一章 一次函数综合与测试课时训练,共32页。

    • 课件
    • 教案
    • 试卷
    • 学案
    • 其他
    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map