![精品试题冀教版八年级数学下册第二十一章一次函数综合练习试卷(精选含详解)第1页](http://img-preview.51jiaoxi.com/2/3/12764554/0/0.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![精品试题冀教版八年级数学下册第二十一章一次函数综合练习试卷(精选含详解)第2页](http://img-preview.51jiaoxi.com/2/3/12764554/0/1.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![精品试题冀教版八年级数学下册第二十一章一次函数综合练习试卷(精选含详解)第3页](http://img-preview.51jiaoxi.com/2/3/12764554/0/2.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
冀教版八年级下册第二十一章 一次函数综合与测试课后练习题
展开
这是一份冀教版八年级下册第二十一章 一次函数综合与测试课后练习题,共22页。试卷主要包含了一次函数的图象不经过的象限是,若直线y=kx+b经过一,若一次函数的图像经过第一等内容,欢迎下载使用。
八年级数学下册第二十一章一次函数综合练习 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、点A(﹣1,y1)和点B(﹣4,y2)都在直线y=﹣2x上,则y1与y2的大小关系为( )A.y1>y2 B.y1<y2 C.y1=y2 D.y1≥y22、在同一平面直角坐标系中,函数的图象与函数的图象互相平行,则下列各点在函数的图象上的点是( )A. B. C. D.3、一次函数y=2x﹣5的图象不经过( )A.第一象限 B.第二象限 C.第三象限 D.第四象限4、一次函数的图象不经过的象限是( )A.第一象限 B.第二象限 C.第三象限 D.第四象限5、点和点都在直线上,则与的大小关系为( )A. B. C. D.6、若直线y=kx+b经过一、二、四象限,则直线y=bx﹣k的图象只能是图中的( )A. B. C. D.7、若一次函数的图像经过第一、三、四象限,则的值可能为( )A.-2 B.-1 C.0 D.28、如图,在平面直角坐标系中,线段AB的端点为A(﹣2,1),B(1,2),若直线y=kx﹣1与线段AB有交点,则k的值不能是( ).A.-2 B.2C.4 D.﹣49、已知一次函数y=k1x+b1和一次函数y1=k2x+b2的自变量x与因变量y1,y2的部分对应数值如表所示,则关于x、y的二元一次方程组的解为( )x…﹣2﹣1012…y1…﹣10123…y2…﹣5﹣3﹣113…A. B. C. D.10、已知点A的坐标为,点A关于x轴的对称点落在一次函数的图象上,则a的值可以是( )A. B. C. D.第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、如图,一次函数和的图象交于点,则不等式的解集是______.2、如图,正比例函数 y=kx(k≠0)的图像经过点 A(2,4),AB⊥x 轴于点 B,将△ABO 绕点 A逆时针旋转 90°得到△ADC,则直线 AC 的函数表达式为_____.3、求一元一次方程kx+b=0的解从函数值看:求y=_____时一次函数y= kx+b中x的值 从函数图象看:求直线y= kx+b与_____交点的横坐标4、画出函数y=-6x与y=-6x+5的图象.(1)这两个函数的图象形状都是______,并且倾斜程度______.(2)函数y=-6x的图象经过______,函数y=-6x+5的图象与y轴交于点______,即它可以看作由直线y=-6x向______平移______个单位长度而得到.5、如果点P1(3,y1),P2(2,y2)在一次函数y=8x-1的图像上,那么y1______y2.(填“>”、“<”或“=”)三、解答题(5小题,每小题10分,共计50分)1、如图1,在平面直角坐标系中,直线分别与轴、轴交于、两点,直线分别与轴、轴交于、两点,点是上一点.(1)求、的值;(2)试判断线段与线段之间的关系,并说明理由;(3)如图2,若点是轴上一点,点是直线上一动点,点是直线上一动点,当是以点为直角顶点的等腰三角形时,请直接写出相应的点、的坐标.2、已知A,B两地相距的路程为12km,甲骑自行车从A地出发前往B地,同时乙步行从B地出发前往A地,如图的折线OCD和线段EF,分别表示甲、乙两人与A地的路程y甲、y乙与他们所行时间x(h)之间的函数关系,且OC与EF相交于点P.(1)求y乙与x的函数关系式以及两人相遇地点P与A地的路程;(2)求线段OC对应的y甲与x的函数关系式;(3)求经过多少h,甲、乙两人相距的路程为6km.3、肥西县祥源花世界管理委员会要添置办公桌椅A,B两种型号,已知2套A型桌椅和1套B型桌椅共需2000元,1套A型桌椅和3套B型桌椅共需3000元.(1)直接写出A型桌椅每套 元,B型桌椅每套 元;(2)若管理委员会需购买两种型号桌椅共20套,若需要A型桌椅不少于12套,B型桌椅不少于6套,平均每套桌椅需要运费10元.设购买A型桌椅x套,总费用为y元.①求y与x之间的函数关系,并直接写出x的取值范围;②求出总费用最少的购置方案.4、一个皮球从16m的高处落下,第一次落地后反弹起8m,第二次落地后反弹起4m,以后每次落地后的反弹高度都减半,h表示反弹高度(单位:m),n表示落地次数.(1)写出表示反弹高度h(单位:m)与落地次数n的对应关系的函数解析式;(2)求皮球第几次落地后的反弹高度为m.5、已知 A、B 两地相距 3km,甲骑车匀速从 A 地前往 B 地,如图表示甲骑车过程中离 A 地的路程 y 甲(km)与他行驶所用的时间 x(min)之间的关系.根据图像解答下列问题:(1)甲骑车的速度是 km/min;(2)若在甲出发时,乙在甲前方 1.2km 的 C 处,两人均沿同一路线同时匀速出发前往 B 地,在第 4 分钟甲追上了乙,两人到达 B 地后停止.请在下面同一平面直角坐标系中画出乙离 B 地的距离 y 乙(km)与所用时间 x(min)的关系的大致图像;(3)在(2)的条件下,求出两个函数图像的交点坐标,并解释它的实际意义. -参考答案-一、单选题1、B【解析】【分析】由直线y=-2x的解析式判断k=−2<0,y随x的增大而减小,再结合点的坐标特征解题即可.【详解】解:∵一次函数中一次项系数k=-2<0,∴y随x的增大而减小,∵-4<-1,∴y1<y2.故选B.【点睛】本题考查一次函数的增减性,是重要考点,难度较易,掌握相关知识是解题关键.2、C【解析】【分析】根据题意两个函数图象互相平行可得,即可确定函数解析式,然后将选项各点代入检验即可确定哪个点在直线上.【详解】解:函数的图象与函数的图象互相平行,∴,∴,当时,,选项A不在直线上;当时,,选项B不在直线上;当时,,选项C在直线上;当时,,选项D不在直线上;故选:C.【点睛】题目主要考查确定一次函数的解析式及确定点是否在直线上,熟练掌握确定一次函数解析式的方法是解题关键.3、B【解析】【分析】由直线的解析式得到k>0,b<0,利用一次函数的性质即可确定直线经过的象限.【详解】解:∵y=2x-5,∴k>0,b<0,故直线经过第一、三、四象限.不经过第二象限.故选:B.【点睛】此题主要考查一次函数的图象和性质,它的图象经过的象限由k,b的符号来确定.4、C【解析】【分析】根据一次函数的解析式,利用一次函数图象与系数的关系可得出一次函数的图象经过第一、二、四象限,此题得解.【详解】解:∵k=-2<0,b=1>0,∴一次函数y=-2x+1的图象经过第一、二、四象限,∴一次函数y=-2x+1的图象不经过第三象限.故选:C.【点睛】本题考查了一次函数图象与系数的关系,牢记“k<0,b>0⇔y=kx+b的图象在一、二、四象限”是解题的关键.5、B【解析】【分析】根据 ,可得 随 的增大而减小,即可求解.【详解】解:∵ ,∴ 随 的增大而减小,∵ ,∴ .故选:B【点睛】本题主要考查了一次函数的性质,熟练掌握对于一次函数 ,当 时, 随 的增大而增大,当 时, 随 的增大而减小是解题的关键.6、B【解析】【分析】根据直线y=kx+b经过一、二、四象限,可得k<0,b>0,从而得到直线y=bx﹣k过一、二、三象限,即可求解.【详解】解:∵直线y=kx+b经过一、二、四象限,∴k<0,b>0,∴﹣k>0,∴直线y=bx﹣k过一、二、三象限,∴选项B中图象符合题意.故选:B【点睛】本题主要考查了一次函数的图象和性质,熟练掌握一次函数的图象和性质是解题的关键.7、D【解析】【分析】利用一次函数图象与系数的关系可得出m-1>0,解之即可得出m的取值范围,再对照四个选项即可得出结论.【详解】解:∵一次函数y=(m-1)x-1的图象经过第一、三、四象限,∴m-1>0,∴m>1,∴m的值可能为2.故选:D.【点睛】本题考查了一次函数图象与系数的关系、解一元一次不等式,牢记“k>0,b<0⇔y=kx+b的图象经过一、三、四象限”是解题的关键.8、B【解析】【分析】当直线y=kx−1过点A时,求出k的值,当直线y=kx−1过点B时,求出k的值,介于二者之间的值即为使直线y=kx−1与线段AB有交点的x的值.【详解】解:①当直线y=kx−1过点A时,将A(−2,1)代入解析式y=kx−1得,k=−1,②当直线y=kx−1过点B时,将B(1,2)代入解析式y=kx−1得,k=3,∵|k|越大,它的图象离y轴越近,∴当k≥3或k≤-1时,直线y=kx−1与线段AB有交点.故选:B.【点睛】本题考查了两直线相交或平行的问题,解题的关键是掌握AB是线段这一条件,不要当成直线.9、C【解析】【分析】利用方程组的解就是两个相应的一次函数图象的交点坐标解决问题.【详解】解:由表格可知,一次函数y1=k1x+b1和一次函数y2=k2x+b2的图象都经过点(2,3),∴一次函数y1=k1x与y=k2x+b的图象的交点坐标为(2,3),∴关于x,y的二元一次方程组的解为.故选:C.【点睛】本题考查了一次函数图像交点坐标与方程组解的关系:对于函数y1=k1x+b1,y2=k2x+b2,其图象的交点坐标(x,y)中x,y的值是方程组的解.10、C【解析】【分析】由点和点关于轴对称,可求出点的坐标,再利用一次函数图象上点的坐标特征可得出关于的方程,解之即可得出结论.【详解】解:点和点关于轴对称,点的坐标为.又点在直线上,,.故选:C.【点睛】本题考查了一次函数图象上点的坐标特征以及关于轴、轴对称的点的坐标,解题的关键是牢记直线上任意一点的坐标都满足函数关系式.二、填空题1、x≥1【解析】【分析】结合图象,写出直线y=mx+n在直线y=kx+b下方所对应的自变量的范围即可.【详解】解:∵函数y=mx+n的图象与y=kx+b的图象交于点P(1,2),∴当x≥1时,kx+b≥mx+n,∴不等式的解集为x≥1.故答案为:x≥1.【点睛】本题考查了一次函数与一元一次不等式:从函数的角度看,就是寻求使一次函数y=kx+b的值大于(或小于)0的自变量x的取值范围;从函数图象的角度看,就是确定直线y=kx+b在x轴上(或下)方部分所有的点的横坐标所构成的集合.2、y=-0.5x+5【解析】【分析】直接把点A(2,4)代入正比例函数y=kx,求出k的值即可;由A(2,4),AB⊥x轴于点B,可得出OB,AB的长,再由△ABO绕点A逆时针旋转90°得到△ADC,由旋转不变性的性质可知DC=OB,AD=AB,故可得出C点坐标,再把C点和A点坐标代入y=ax+b,解出解析式即可.【详解】解:∵正比例函数y=kx(k≠0)经过点A(2,4)∴4=2k,解得:k=2,∴y=2x;∵A(2,4),AB⊥x轴于点B,∴OB=2,AB=4,∵△ABO绕点A逆时针旋转90°得到△ADC,∴DC=OB=2,AD=AB=4∴C(6,2)设直线AC的解析式为y=ax+b,把(2,4)(6,2)代入解析式可得:,解得:,所以解析式为:y=-0.5x+5【点睛】本题考查的是一次函数图象上点的坐标特点及图形旋转的性质,熟知一次函数图象上各点的坐标一定适合此函数的解析式是解答此题的关键.3、 0 x轴【解析】略4、 一条直线 相同 原点 (0,5) 上 5【解析】略5、【解析】【分析】先求出y1,y2的值,再比较出其大小即可.【详解】解:∵点P1(3,y1)、P2(2,y2)在一次函数y=8x-1的图象上,∴y1=8×3-1=23,y2=8×2-1=15,∵23>15,∴y1>y2.故答案为:>.【点睛】本题考查的是一次函数图象上点的坐标特点,熟知一次函数图象上各点的坐标一定适合此函数的解析式是解答此题的关键.三、解答题1、 (1)2,1(2)垂直且相等,见解析(3)点、的坐标分别为、或、【解析】【分析】(1)分别求出点A,B的坐标,将点坐标代入求得b,从而得直线BD的解析式,再把点C坐标代入BD解析式,从而求出m的值;(2)分别求出,即可求解;(3)证明△MHQ≌△QGN(AAS),则MH=GQ,NG=QH,即可求解.(1)对于y=2x+2,令x=0,则y=2,令y=0,即y=2x+2=0,解得x=-1,故点A、B的坐标分别为(-1,0)、(0,2),∵直线过点B,将点B坐标代入上式并解得:故b=2,则该直线的表达式为,当x=-3时,=1=m,即点C(-3,1);故答案为:2,1;(2)由(1)知,点A、B、C的坐标分别为(-1,0)、(0,2)、(-3,1),则,同理,,则AB2+AC2=BC2,故∠BAC为直角,且AC=BA故线段CA与线段BA之间的关系为垂直且相等;(3)当△MNQ是以点Q为直角顶点的等腰三角形时,∠MQN=90°,QM=QN,设点M、N的坐标分别为(s,2s+2)、(t,t+2),过点Q作x轴的平行线交过点M与y轴的平行线于点H,交过点N与y轴的平行线于点G,∵∠NQG+∠MQH=90°,∠NQG+∠QNG=90°,∴∠MQH=∠QNG,∵∠MHQ=∠QGN=90°,MQ=NQ,∴△MHQ≌△QGN(AAS),∴MH=GQ,NG=QH,即2s+2-(-1)=-t(或-1-2s-2=-t),s=t+2-(-1)(或-s=t+2+1),解得:或,所以,点、的坐标分别为、或、【点睛】本题考查的是一次函数综合运用,涉及到一次函数的性质、勾股定理的运用、三角形全等等,其中(3),要注意分类求解,避免遗漏.2、 (1),9km(2)(3)经过小时或1小时,甲、乙两人相距6km.【解析】【分析】(1)根据题意和函数图象中的数据,可以得到y乙与x的函数关系式以及两人相遇地点与A地的距离; (2)根据函数图象中的数据,可以计算出线段OP对应的y甲与x的函数关系式; (3)根据(1)和(2)中的结果,分两种情况讨论,可以得到经过多少小时,甲、乙两人相距6km.(1)解:设y乙与x的函数关系式是, ∵点E(0,12),F(2,0)在函数y乙=kx+b的图象上, ∴ ,解得 , 即y乙与x的函数关系式是, 当x=0.5时,, 即两人相遇地点P与A地的距离是9km;(2)解:设线段OC对应的y甲与x的函数关系式是y甲=ax, ∵点(0.5,9)在函数y甲=ax的图象上, ∴9=0.5a, 解得a=18, 即线段OP对应的y甲与x的函数关系式是y甲=18x;(3)解:①令 即 或 解得:或 甲从A地到达B地的时间为:小时,经检验:不符合题意,舍去,②当甲到达B地时,乙离B地6千米所走时间为:(小时), 综上所述,经过小时或1小时,甲、乙两人相距6km.【点睛】本题考查一次函数的应用,解答本题的关键是明确题意,利用数形结合的思想解答.其中第三问要注意进行分类讨论.3、 (1)A型桌椅每套600元,B型桌椅每套800元;(2)购买A型桌椅14套、B型桌椅6套,总费用最少,最少总费用为13400元【解析】【分析】(1)设A型桌椅每套a元,B型桌椅每套b元,根据题意列二元一次方程组并解方程即可;(2)①根据总费用=A型桌椅的费用+B型桌椅的费用建立y与x之间的函数关系式子,再由A型桌椅不少于12套,B型桌椅不少于6套列出一元一次不等式组求解即可得出x的取值范围;②根据一次函数的性质求解即可.(1)解:设A型桌椅每套a元,B型桌椅每套b元,根据题意,得:,解得:,所以A型桌椅每套600元,B型桌椅每套800元;(2)解:①据题意,总费用y=600x+800(20-x)+20×10=-200x+16200,∵A型桌椅不少于12套,B型桌椅不少于6套,∴,解得:12≤x≤14,所以y与x之间的函数关系为y=-200x+16200(12≤x≤14,x为整数);②由①知y=-200x+16200,且-200<0,∴y随x的增大而减小,∴当x=14时,总费用y最少,最少费用为-200×14+16200=13400元,即购买A型桌椅14套、B型桌椅6套,总费用最少,最少总费用为13400元.【点睛】本题考查二元一次方程的应用、一次函数的应用、一元一次不等式组的应用,理解题意,正确列出方程或函数关系式是解答的关键.4、 (1)h(n为正整数);(2)皮球第7次落地后的反弹高度为m.【解析】【分析】(1)由题意可知,每次落地后的反弹高度都减半,依次可得表示反弹高度与落地次数的对应函数关系;(2)把h代入(1)中解析式即可解题.(1)解:根据题意得,表示反弹高度h(单位:m)与落地次数n的对应关系的函数解析式:h(n为正整数);(2)把h代入h,得,2n=16×8=27,n=7故皮球第7次落地后的反弹高度为m.【点睛】本题考查一次函数的应用,是基础考点,掌握相关知识是解题关键.5、 (1)0.5(2)见解析(3)(,),它的意义是当出发min后,乙离B的距离和甲离A地的距离都是km【解析】【分析】(1)由甲骑车6min行驶了3km,可得甲骑车的速度是0.5km/min;(2)设乙的速度为x km/min,求出乙的速度,可得乙出发后9min到达B地,即可作出图象;(3)由y甲=0.5x,y乙=1.8-0.2x,可得两个函数图象的交点坐标为(,),它的意义是当出发min后,乙离B的距离和甲离A地的距离都是km.(1)解:甲骑车6min行驶了3km,∴甲骑车的速度是3÷6=0.5(km/min),故答案为:0.5;(2)解:设乙的速度为x km/min,由题意得0.5×4-4x=1.2,∴x=0.2,又A、B两地相距3km,A、C两地相距1.2km,∴B、C两地相距1.8km,∴乙出发后1.8÷0.2=9(min)到达B地,在同一平面直角坐标系中画出乙离B地的距离y乙(km)与所用时间x(min)的关系的大致图象如下:(3)解:由(1)(2)可知,y甲=0.5x,y乙=1.8-0.2x,由0.5x=1.8-0.2x得x=,当x=时,y甲=y乙=,∴两个函数图象的交点坐标为(,),它的意义是当出发min后,乙离B的距离和甲离A地的距离都是km.【点睛】本题考查一次函数的应用,一元一次方程的应用,解题的关键是读懂题意,求出甲、乙速度从而列出函数关系式.
相关试卷
这是一份初中数学冀教版八年级下册第二十一章 一次函数综合与测试习题,共29页。试卷主要包含了巴中某快递公司每天上午7等内容,欢迎下载使用。
这是一份2021学年第二十一章 一次函数综合与测试习题,共31页。试卷主要包含了下列不能表示是的函数的是,下列函数中,一次函数是等内容,欢迎下载使用。
这是一份初中数学冀教版八年级下册第二十一章 一次函数综合与测试课后作业题,共26页。试卷主要包含了一次函数的大致图象是,点A等内容,欢迎下载使用。
![文档详情页底部广告位](http://img.51jiaoxi.com/images/257d7bc79dd514896def3dc0b2e3f598.jpg)