![难点详解冀教版八年级数学下册第二十一章一次函数专题测试试题(精选)第1页](http://img-preview.51jiaoxi.com/2/3/12764560/0/0.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![难点详解冀教版八年级数学下册第二十一章一次函数专题测试试题(精选)第2页](http://img-preview.51jiaoxi.com/2/3/12764560/0/1.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![难点详解冀教版八年级数学下册第二十一章一次函数专题测试试题(精选)第3页](http://img-preview.51jiaoxi.com/2/3/12764560/0/2.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
初中数学冀教版八年级下册第二十一章 一次函数综合与测试课时练习
展开
这是一份初中数学冀教版八年级下册第二十一章 一次函数综合与测试课时练习,共28页。试卷主要包含了若实数,直线不经过点等内容,欢迎下载使用。
八年级数学下册第二十一章一次函数专题测试
考试时间:90分钟;命题人:数学教研组
考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)
一、单选题(10小题,每小题3分,共计30分)
1、如图,已知点是一次函数上的一个点,则下列判断正确的是( )
A. B.y随x的增大而增大
C.当时, D.关于x的方程的解是
2、如图,李爷爷要围一个长方形菜园ABCD,菜园的一边利用足够长的墙,用篱笆围成的另外三边的总长恰好为24m,设边BC的长为xm,边AB的长为ym(x>y).则y与x之间的函数表达式为( )
A.y=﹣2x+24(0<x<12) B.y=﹣x+12(8<x<24)
C.y=2x﹣24(0<x<12) D.y=x﹣12(8<x<24)
3、关于函数y=-2x+1,下列结论正确的是( )
A.图像经过点 B.y随x的增大而增大
C.图像不经过第四象限 D.图像与直线y=-2x平行
4、若实数、满足且,则关于的一次函数的图像可能是( )
A. B. C. D.
5、在同一平面直角坐标系中,函数的图象与函数的图象互相平行,则下列各点在函数的图象上的点是( )
A. B. C. D.
6、某种摩托车的油箱最多可以储油10升,李师傅记录了他的摩托车加满油后,油箱中的剩余油量y(升)与摩托车行驶路程x(千米)的关系,则当0≤x≤500时,y与x的函数关系是( ).
x(千米)
0
100
150
300
450
500
y(升)
10
8
7
4
1
0
A.正比例函数关系 B.一次函数关系
C.二次函数关系 D.反比例函数关系
7、已知正比例函数y=3x的图象上有两点M(x1,y1)、N(x2,y2),如果x1>x2,那么y1与y2的大小关系是( )
A.y1>y2 B.y1=y2 C.y1<y2 D.不能确定
8、直线不经过点( )
A.(0,0) B.(﹣2,3) C.(3,﹣2) D.(﹣3,2)
9、关于一次函数的图像与性质,下列说法中正确的是( )
A.y随x的增大而增大;
B.当 m=3时,该图像与函数的图像是两条平行线;
C.不论m取何值,图像都经过点(2,2) ;
D.不论m取何值,图像都经过第四象限.
10、下列不能表示是的函数的是( )
A.
0
5
10
15
3
3.5
4
4.5
B.
C.
D.
第Ⅱ卷(非选择题 70分)
二、填空题(5小题,每小题4分,共计20分)
1、点,是直线上的两点,则__.(填,或
2、求kx+b>0(或<0)(k≠0)的解集
从函数值看:y=kx+b的值大于(或小于)0时,_____的取值范围
从函数图象看:直线y=kx+b在_____上方(或下方)的x取值范围
3、如图,直线与相交于点,则关于x,y的二元一次方程组的解为______.
4、一条笔直的公路上顺次有A,B,C三地,甲车从B地出发匀速向C地行驶,同时乙车从B地出发匀速向A地行驶,到达A地并在A地停留1小时后,调头将速度提高了50% 向C地行驶,两车到达C地均停止运动.在两车行驶的过程中,甲乙两车之间的距离s(千米)与行驶时间t (小时)之间的函数图象如图所示,当甲乙两车第一次相遇时,距A地的距离为_________ 千米.
5、已知:直线与直线的图象交点如图所示,则方程组的解为______.
三、解答题(5小题,每小题10分,共计50分)
1、已知一次函数在轴上的截距为2,且随的增大而减小,求一次函数的解析式,并求出它的图像与坐标轴围成的三角形的面积
2、我国是一个严重缺水的国家.为了加强公民的节水意识,某市制定了如下用水收费标准:每户每月的用水不超过8吨时,水价为每吨1.5元,超过8吨时,超过的部分按每吨2.2元收费.该市某户居民10月份用水吨,应交水费元.
(1)若,请写出与的函数关系式.
(2)若,请写出与的函数关系式.
(3)如果该户居民这个月交水费23元,那么这个月该户用了多少吨水?
3、如图,长方形AOBC在直角坐标系中,点A在y轴上,点B在x轴上,已知点C的坐标是(8,4).
(1)求对角线AB所在直线的函数关系式;
(2)对角线AB的垂直平分线MN交x轴于点M,连接AM,求线段AM的长;
(3)若点P是直线AB上的一个动点,当△PAM的面积与长方形OACB的面积相等时,求点P的坐标.
4、如图,在平面直角坐标系中,直线AB为y=﹣x+b交y轴于点A(0,3),交x轴于点B,直线x=1交AB于点D,交x轴于点E,P是直线x=1上一动点,且在点D的上方,设P(1,n).
(1)求点B的坐标及点O到直线AB的距离;
(2)求△ABP的面积(用含n的代数式表示);
(3)当S△ABP=时,在第一象限找点C,使△PBC为等腰直角三角形,直接写出点C的坐标.
5、对于平面直角坐标系xOy中的图形M和点P,给出如下定义:如果图形M上存在点Q,使得0≤PQ≤2,那么称点P为图形M的和谐点.已知点A(﹣4,3),B(4,3).
(1)在点P1(﹣2,1),P2(﹣1,0),P3(5,4)中,直线AB的和谐点是 ;
(2)点P为直线y=x+1上一点,若点P为直线AB的和谐点,求点P的横坐标t的取值范围;
(3)已知点C(4,﹣3),D(﹣4,﹣3),如果直线y=x+b上存在矩形ABCD的和谐点E,F,使得线段EF上的所有点都是矩形ABCD的和谐点,且EF>2,请直接写出b的取值范围.
-参考答案-
一、单选题
1、D
【解析】
【分析】
根据已知函数图象可得,是递减函数,即可判断A、B选项,根据时的函数图象可知的值不确定,即可判断C选项,将B点坐标代入解析式,可得进而即可判断D
【详解】
A.该一次函数经过一、二、四象限
, y随x的增大而减小,
故A,B不正确;
C. 如图,设一次函数与轴交于点
则当时,,故C不正确
D. 将点坐标代入解析式,得
关于x的方程的解是
故D选项正确
故选D
【点睛】
本题考查了一次函数的图象与性质,一次函数与二元一次方程组的解的关系,掌握一次函数的图象与性质是解题的关键.
2、B
【解析】
【分析】
根据菜园的三边的和为24m,进而得出一个x与y的关系式,然后根据题意可得关于x的不等式,求解即可确定x的取值范围.
【详解】
解:根据题意得,菜园三边长度的和为24m,
即,
所以,
由y>0得,,
解得,
当时,即,
解得,
∴,
故选:B.
【点睛】
题目主要考查一次函数的运用及根据条件得出不等式求解,理解题意,利用不等式得出自变量的取值范围是解题关键.
3、D
【解析】
【分析】
根据一次函数的性质对各选项进行逐一判断即可.
【详解】
解:A、当x=−2,y=−2x+1=−2×(−2)+1=5,则点(−2,1)不在函数y=−2x+1图象上,故本选项错误;
B、由于k=−2<0,则y随x增大而减小,故本选项错误;
C、由于k=−2<0,则函数y=−2x+1的图象必过第二、四象限,b=1>0,图象与y轴的交点在x的上方,则图象还过第一象限,故本选项错误;
D、由于直线y=−2x+1与直线y=−2x的倾斜角相等且与y轴交于不同的点,所以它们相互平行,故本选项正确;
故选:D.
【点睛】
本题考查了一次函数y=kx+b(k≠0)的性质:当k>0,图象经过第一、三象限,y随x增大而增大;当k<0,图象经过第二、四象限,y随x增大而减小;当b>0,图象与y轴的交点在x的上方;当b=0,图象经过原点;当b<0,图象与y轴的交点在x的下方.
4、B
【解析】
【分析】
根据实数、满足可知,、互为相反数,再根据,可确定、的符号,进而确定图象的大致位置.
【详解】
解:∴实数、满足,
∴、互为相反数,
∵,
∴,,
∴
∴一次函数的图像经过二、三、四象限,
故选:B.
【点睛】
本题考查了一次函数图象的性质,解题关键是根据已知条件,确定、的符号.
5、C
【解析】
【分析】
根据题意两个函数图象互相平行可得,即可确定函数解析式,然后将选项各点代入检验即可确定哪个点在直线上.
【详解】
解:函数的图象与函数的图象互相平行,
∴,
∴,
当时,,选项A不在直线上;
当时,,选项B不在直线上;
当时,y=6-3=3,选项C在直线上;
当时,,选项D不在直线上;
故选:C.
【点睛】
题目主要考查确定一次函数的解析式及确定点是否在直线上,熟练掌握确定一次函数解析式的方法是解题关键.
6、B
【解析】
【分析】
根据表格数据,描点、连线画出函数的图象,根据函数图象进行判断即可
【详解】
根据表格数据,描点、连线画出函数的图象如图:
故y与x的函数关系是一次函数.
故选B.
【点睛】
本题考查了画一次函数图象,掌握一次函数图象的性质是解题的关键.
7、A
【解析】
【分析】
先根据一次函数的解析式判断出函数的增减性,再根据x1>x2即可得出结论.
【详解】
∵正比例函数y=3x中,k=3>0,
∴y随x的增大而增大,
∵x1>x2,
∴y1>y2.
故选:A.
【点睛】
本题考查的是一次函数图象上点的坐标特征,熟练掌握正比例函数的增减性与x的系数的关系是解题的关键.
8、B
【解析】
【分析】
将各点代入函数解析式即可得.
【详解】
解:A、当时,,即经过点,此项不符题意;
B、当时,,即不经过点,此项符合题意;
C、当时,,即经过点,此项不符题意;
D、当时,,即经过点,此项不符题意;
故选:B.
【点睛】
本题考查了正比例函数,熟练掌握正比例函数的图象与性质是解题关键.
9、D
【解析】
【分析】
根据一次函数的增减性判断A;根据两条直线平行时,k值相同而b值不相同判断B;根据一次函数图象与系数的关系判断C、D.
【详解】
A、一次函数中,∵,的符号未知,故不能判断函数的增减性,故本选项不正确;
B、当m=3时,一次函数与的图象不是两条平行线,故本选项不正确;
C、一次函数,过定点,故本选项不正确;
D、一次函数,过定点,则不论m取何值,图像都经过第四象限,故本选项正确.
故选D.
【点睛】
本题考查了两条直线的平行问题:若直线y1=k1x+b1与直线y2=k2x+b2平行,那么k1=k2,b1≠b2.也考查了一次函数的增减性以及一次函数图象与系数的关系.
10、B
【解析】
【分析】
根据函数的定义(如果有两个变量x和y,并且对于x的每一个确定的值,y都有唯一确定的值与其对应,我们就把x称为自变量,把y称为因变量,y是x的函数)及利用待定系数法确定一次函数解析式依次进行判断即可得.
【详解】
解:A、根据图表进行分析为一次函数,设函数解析式为:,
将,,,
分别代入解析式为:
,
解得:,,
所以函数解析式为:,
∴y是x的函数;
B、从图象上看,一个x值,对应两个y值,不符合函数定义,y不是x的函数;
C、D选项从图象及解析式看可得y是x的函数.
故选:B.
【点睛】
题目主要考查函数的定义及利用待定系数法确定一次函数解析式,深刻理解函数定义是解题关键.
二、填空题
1、
【解析】
【分析】
根据正比例函数的增减性进行判断即可直接得出.
【详解】
解:,
y随着x的增大而减小,
,
.
故答案为:.
【点睛】
题目主要考查正比例函数的增减性质,理解题意,熟练掌握运用函数的增减性是解题关键.
2、 x x轴
【解析】
略
3、
【解析】
【分析】
根据两条直线相交与二元一次方程组的关系即可求得二元一次方程组的解.
【详解】
∵直线与相交于点
∴的坐标既满足,也满足
∴是方程组的解
故答案为:
【点睛】
本题考查了两条直线相交与二元一次方程组的关系,理解这个关系是关键.
4、432
【解析】
【分析】
设甲的速度为v甲,乙的速度为v乙,根据题意可得v甲+v乙=100①,可求出乙追上甲的时间为4.8h,根据题意可得4.8×(1+50%)V乙=2V乙+7.8V甲②,联立①②求出两车的速度即可解答.
【详解】
解:如图:
设甲的速度为v甲,乙的速度为v乙,
OD段:两人的速度和为:200÷2=100(km/h),
即v甲+v乙=100①,
此时乙休息1h,则E处的横坐标为:2+1=3,
则乙用了:7.8-3=4.8(h)追上甲,
则4.8×(1+50%)V乙=2V乙+7.8V甲②,
联立①②得V甲=40,V乙=60,
则第一次相遇是在7.8h时,
距离A地:4.8×(1+50%)×60=432(km).
故答案为:432.
【点睛】
本题主要考查了一次函数的应用.理解函数图象的点的坐标的实际意义,从而得到甲乙两车的行驶的距离和速度是解题的关键.
5、
【解析】
【分析】
根据函数图象与二元一次方程组的关系,求方程组的解,就是求两方程所表示的两一次函数图象交点的坐标,从而得出答案.
【详解】
解:∵函数y=x-b与函数y=mx+6的交点坐标是(2,3),
∴方程组的解为.
故答案为.
【点睛】
本题主要考查了一次函数与二元一次方程组的关系,比较简单,熟悉交点坐标就是方程组的解是解题的关键.
三、解答题
1、y=-2x+2;1
【解析】
【分析】
根据截距为2,且y随x的增大而减小即可确定k值,求出解析式即可求出面积.
【详解】
解:∵一次函数y=kx+k2-2在y轴上的截距为2,
∴|k2-2|=2,
即k=±2或k'=0,
又∵y随x的增大而减小,
∴k<0,
即k=-2,
∴一次函数解析式为y=-2x+2;
作出函数图象如图,
设坐标轴原点为O,函数图象与x轴交于点B,与y轴交于点A,
由解析式可知A(0,2),B(1,0),
∴OA=2,OB=1,
∴S△AOB=OA•OB=×2×1=1.
【点睛】
本题主要考查一次函数的知识,熟练掌握一次函数基本知识是解题的关键.
2、 (1)
(2)
(3)13吨
【解析】
【分析】
(1)当0<x≤8时,根据水费=用水量×1.5,即可求出y与x的函数关系式;
(2)当x>8时,根据“每户每月的用水不超过8吨时,水价为每吨1.5元,超过8吨时,超过的部分按每吨2.2元收费”,得出水费=8×1.5+(用水量-8)×2.2,即可求出y与x的函数关系式;
(3)当0<x≤8时,y≤12,由此可知这个月该户用水量超过8吨,将y=23代入(2)中所求的关系式,求出x的值即可.
(1)
根据题意可知:
当时,;
(2)
根据题意可知:
当时,;
(3)
当时,,
的最大值为(元,,
该户当月用水超过8吨.
令中,则,
解得:.
答:这个月该户用了13吨水.
【点睛】
本题考查了一次函数的应用,根据数量关系找出函数关系式是解题关键.
3、(1);(2)5;(3)点P的坐标为(,-)或(-,)
【解析】
【分析】
(1)由坐标系中点的意义结合图形可得出A、B点的坐标,设出对角线AB所在直线的函数关系式,由待定系数法即可求得结论;
(2)由勾股定理求出AB的长,再结合线段垂直平分线的性质,可得AM=BM,OM=OB−BM,再次利用勾股定理得出AM的长;
(3)(方法一)先求出直线AM的解析式,设出P点坐标,由点到直线的距离求出AM边上的高h,再结合三角形面积公式与长方形面积公式即可求出P点坐标;
(方法二)由△PAM的面积与长方形OACB的面积相等可得出S△PAM的值,设点P的坐标为(x,−x+4),分点P在AM的右侧及左侧两种情况,找出关于x的一元一次方程,解之即可得出点P的坐标,此题得解.
【详解】
解:(1)∵四边形AOBC为长方形,且点C的坐标是(8,4),
∴AO=CB=4,OB=AC=8,
∴A点坐标为(0,4),B点坐标为(8,0).
设对角线AB所在直线的函数关系式为y=kx+b,
则有,解得:,
∴对角线AB所在直线的函数关系式为y=-x+4.
(2)∵∠AOB=90°,
∴勾股定理得:AB==4,
∵MN垂直平分AB,
∴BN=AN=AB=2.
∵MN为线段AB的垂直平分线,
∴AM=BM
设AM=a,则BM=a,OM=8-a,
由勾股定理得,a2=42+(8-a)2,
解得a=5,即AM=5.
(3)(方法一)∵OM=3,
∴点M坐标为(3,0).
又∵点A坐标为(0,4),
∴直线AM的解析式为y=-x+4.
∵点P在直线AB:y=-x+4上,
∴设P点坐标为(m,-m+4),
点P到直线AM:x+y-4=0的距离h==.
△PAM的面积S△PAM=AM•h=|m|=SOABC=AO•OB=32,
解得m=± ,
故点P的坐标为(,-)或(-,).
(方法二)∵S长方形OACB=8×4=32,
∴S△PAM=32.
设点P的坐标为(x,-x+4).
当点P在AM右侧时,S△PAM=MB•(yA-yP)=×5×(4+x-4)=32,
解得:x=,
∴点P的坐标为(,-);
当点P在AM左侧时,S△PAM=S△PMB-S△ABM=MB•yP-10=×5(-x+4)-10=32,
解得:x=-,
∴点P的坐标为(-,).
综上所述,点P的坐标为(,-)或(-,).
【点睛】
本题考查了坐标系中点的意、勾股定理、点到直线的距离、三角形和长方形的面积公式,解题的关键:(1)根据坐标系中点的意义,找到A、B点的坐标;(2)由线段垂直平分线的性质和勾股定理找出BM的长度;(3)(方法一)结合点到直线的距离、三角形和长方形的面积公式找到关于m的一元一次方程;(方法二)利用分割图形求面积法找出关于x的一元一次方程.本题属于中等题,难度不大,运算量不小,这里尤其要注意点P有两个.
4、 (1)B(4,0),
(2)
(3)(5,7)或(8,3)或(,)
【解析】
【分析】
(1)求出直线AB的解析式,可求点B坐标,由面积法可求解;
(2)求出点D坐标,由三角形的面积公式可求解;
(3)先计算当S△ABP=时,P的坐标,以PB为边在第一象限作等腰直角三角形BPC,分三种情况讨论:分别以三个顶点为直角顶点画三角形,根据图形可得C的坐标.
(1)
解:∵直线AB为y=x+b交y轴于点A(0,3),
∴b=3,AO=3,
∴直线AB解析式为:y=x+3,
令y=0,则0=x+3,x=4,
∴B(4,0),
∴OB=4,
∴AB==5,
∴S△AOB=×OA×OB=×AB×点O到直线AB的距离,
∴点O到直线AB的距离==;
(2)
∵点D在直线AB上,
∴当x=1时,y=,即点D(1,),
∴PD=n-,
∵OB=4,
∴S△ABP==;
(3)
当S△ABP=时,,解得n=4,
∴点P(1,4),
∵E(1,0),
∴PE=4,BE=3,
第1种情况,如图,当∠CPB=90°,BP=PC时,过点C作CN⊥直线x=1于点N.
∵∠CPB=90°,
∴∠CPN+∠BPE=90°,又∠CPN+∠PCN=90°,
∴∠BPE=∠PCN,
又∵∠CNP=∠PEB=90°,BP=PC,
∴△CNP≌△PEB(AAS),
∴PN=EB=3,PE=CN=4,
∴NE=NP+PE=3+4=7,
∴C(5,7);
第2种情况,如图,当∠PBC=90°,BP=BC时,过点C作CF⊥x轴于点F.
同理可证:△CBF≌△BPE(AAS),
∴CF=BE=3,BF=PE=4,
∴OF=OB+BF=4+4=8,
∴C(8,3);
第3种情况,如图3,当∠PCB=90°,CP=CB时,
过点C作CH⊥BE,垂足为H,过点P作PG⊥CH,垂足为G,
同理可证:△PCG≌△CBH(AAS),
∴CG=BH,PG=CH,
∵PE=4,BE=3,设CG=BH=x,PG=CH=y,
则PE=GH=x+y=4,BE=PG-BH=y-x=3,
解得:x=,y=,
∴C(,),
∴以PB为边在第一象限作等腰直角三角形BPC,点C的坐标是(5,7)或(3,8)或(,).
【点睛】
本题是一次函数综合题,考查了待定系数法,三角形面积公式,全等三角形的判定和性质,利用分类讨论思想解决问题是解题的关键.
5、 (1)P1,P3
(2)0≤t≤4
(3)3≤b<5或﹣5<b≤﹣3
【解析】
【分析】
(1)作出直线AB图象,根据到直线的距离即可得出结论;
(2)设出点P的坐标,根据和谐点的定义找出临界值即可求出t的取值范围;
(3)根据图象找出临界值,再根据对称性写全取值范围即可.
(1)
解:作AB图象如图,
P2到AB的距离为3不符合和谐点条件,
P1、P3点到直线AB的距离在0~2之间,符合和谐点的条件,
故直线AB的和谐点为P1,P3;
故答案为:P1,P3;
(2)
解:∵点P为直线y=x+1上一点,
∴设P点坐标为(t,t+1),
寻找直线上的点,使该点到AB垂线段的距离为2,
∴|t+1-3|=2,
解得t=0或t'=4,
∴0≤t≤4;
(3)
解:如图当b=5时,图中线段EF上的点都是矩形ABCD的和谐点,且EF=2,
当b=3时,线段E'F'上的点都是矩形ABCD的和谐点,E'F'>2,
∴3≤b<5,
由对称性同法可知﹣5<b≤﹣3也满足条件,
故3≤b<5或﹣5<b≤﹣3.
.
【点睛】
本题主要考查一次函数的知识,弄清新定义是解题的关键.
相关试卷
这是一份数学第二十一章 一次函数综合与测试一课一练,共25页。试卷主要包含了直线不经过点等内容,欢迎下载使用。
这是一份2021学年第二十一章 一次函数综合与测试课堂检测,共27页。
这是一份初中数学冀教版八年级下册第二十一章 一次函数综合与测试一课一练,共28页。