![精品试题冀教版八年级数学下册第二十一章一次函数专项测评试题第1页](http://img-preview.51jiaoxi.com/2/3/12764573/0/0.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![精品试题冀教版八年级数学下册第二十一章一次函数专项测评试题第2页](http://img-preview.51jiaoxi.com/2/3/12764573/0/1.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![精品试题冀教版八年级数学下册第二十一章一次函数专项测评试题第3页](http://img-preview.51jiaoxi.com/2/3/12764573/0/2.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
初中数学冀教版八年级下册第二十一章 一次函数综合与测试同步训练题
展开
这是一份初中数学冀教版八年级下册第二十一章 一次函数综合与测试同步训练题,共24页。试卷主要包含了巴中某快递公司每天上午7等内容,欢迎下载使用。
八年级数学下册第二十一章一次函数专项测评 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、点A(3,)和点B(-2,)都在直线y=-2x+3上,则和的大小关系是( )A. B. C. D.不能确定2、下列语句是真命题的是( ).A.内错角相等B.若,则C.直角三角形中,两锐角和的函数关系是一次函数D.在中,,那么为直角三角形3、点和点都在直线上,则与的大小关系为( )A. B. C. D.4、下列函数中,y是x的一次函数的是( )A.y= B.y=﹣3x+1 C.y=2 D.y=x2+15、无论m为何实数.直线与的交点不可能在( )A.第一象限 B.第二象限 C.第三象限 D.第四象限6、甲、乙两车从城出发前往城,在整个行驶过程中,汽车离开城的距离与行驶时间的函数图象如图所示,下列说法正确的有( )①甲车的速度为;②乙车用了到达城;③甲车出发时,乙车追上甲车A.0个 B.1个 C.2个 D.3个7、巴中某快递公司每天上午7:00﹣8:00为集中揽件和派件时段,甲仓库用来揽收快件,乙仓库用来派发快件,该时段内甲、乙两仓库的快件数量y(件)与时间x(分)之间的函数图象如图所示,下列说法正确的个数为( )①15分钟后,甲仓库内快件数量为180件;②乙仓库每分钟派送快件数量为8件;③8:00时,甲仓库内快件数为400件;④7:20时,两仓库快递件数相同.A.1个 B.2个 C.3个 D.4个8、已知点,在一次函数的图像上,则m与n的大小关系是( )A. B. C. D.无法确定9、某工厂投入生产一种机器,每台成本y(万元/台)与生产数量x(台)之间是函数关系,函数y与自变量x的部分对应值如表:则y与x之间的解析式是( )x(单位:台)102030y(单位:万元/台)605550A.y=80- 2x B.y=40+ 2xC.y=65- D.y=60-10、已知点(﹣1,y1),(4,y2)在一次函数y=3x+a的图象上,则y1,y2的大小关系是( )A.y1<y2 B.y1=y2 C.y1>y2 D.不能确定第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、若正比例函数y=kx(k是常数,k≠0)的图象经过第一、三象限,请写出一个满足上述要求的k的值______.2、如图,直线与的交点的横坐标为2,则不等式的自变量的取值范围是________.3、如图,一次函数y=2x和y=ax+5的图象交于点A(m,3),则不等式ax+5<2x的解集是 _____.4、已知函数y=kx的图像经过二、四象限,且不经过,请写出一个符合条件的函数解析式______.5、如图,点C的坐标是(2,2),A为坐标原点,CB⊥x轴于B,CD⊥y轴于D,点E是线段BC的中点,过点A的直线y=kx交线段DC于点F,连接EF,若AF平分∠DFE,则k的值为_________.三、解答题(5小题,每小题10分,共计50分)1、已知直线与x轴交于点,与y轴相交于点,直线与y轴交于点C,与x轴交于点D,连接BD.(1)求直线的解析式;(2)直线上是否存在一点E,使得,若存在求出点E的坐标,若不存在,请说明理由.2、已知一次函数图象与直线平行且过点.(1)求一次函数解析式;(2)若(1)中一次函数图象,分别与、轴交于、两点,求、两点坐标;(3)若点在轴上,且,求点坐标.3、肥西县祥源花世界管理委员会要添置办公桌椅A,B两种型号,已知2套A型桌椅和1套B型桌椅共需2000元,1套A型桌椅和3套B型桌椅共需3000元.(1)直接写出A型桌椅每套 元,B型桌椅每套 元;(2)若管理委员会需购买两种型号桌椅共20套,若需要A型桌椅不少于12套,B型桌椅不少于6套,平均每套桌椅需要运费10元.设购买A型桌椅x套,总费用为y元.①求y与x之间的函数关系,并直接写出x的取值范围;②求出总费用最少的购置方案.4、已知一次函数的图象与轴交于点,与轴交于点(1)求、两点的坐标;(2)画出函数的图象5、如图1,一个正立方体铁块放置在圆柱形水槽内,水槽的底面圆的面积记为,正立方体的底面正方形的面积记为.现以一定的速度往水槽中注水,28秒时注满水槽.此时停止注水,并立刻将立方体铁块用细线竖直匀速上拉直至全部拉出水面.水槽内水面的高度y(cm)与注水时间x(s)之间的函数图象如图2所示.(1)正立方体的棱长为______cm,______;(2)当圆柱形水槽内水面高度为12cm时,求注水时间是几秒?(3)铁块完全拉出时,水面高度为______cm. -参考答案-一、单选题1、C【解析】【分析】利用一次函数的增减性性质判定即可.【详解】∵直线y=-2x+3的k=-2<0,∴y随x的增大而减小,∵-2<3,∴,故选C.【点睛】本题考查了一次函数的增减性,熟练掌握性质是解题的关键.2、C【解析】【分析】根据平行线的性质,函数的定义,三角形内角和定理逐一判断即可.【详解】解:A、两直线平行,内错角相等,故原命题是假命题,不符合题意;B、若,则,故原命题是假命题,不符合题意;C、直角三角形中,两锐角和的函数关系是一次函数,故原命题是真命题,符合题意;D、在中,,那么最大角∠C=,故△ABC为锐三角形,故原命题是假命题,不符合题意;故选:C.【点睛】本题考查了命题与定理:判断事物的语句叫命题;正确的命题称为真命题,错误的命题称为假命题;经过推理论证的真命题叫定理.熟练掌握平行线的性质,三角形内角和定理是解题的关键.3、B【解析】【分析】根据 ,可得 随 的增大而减小,即可求解.【详解】解:∵ ,∴ 随 的增大而减小,∵ ,∴ .故选:B【点睛】本题主要考查了一次函数的性质,熟练掌握对于一次函数 ,当 时, 随 的增大而增大,当 时, 随 的增大而减小是解题的关键.4、B【解析】【分析】利用一般地,形如y=kx+b(k≠0,k、b是常数)的函数,叫做一次函数,进而判断得出答案.【详解】解:∵y=不符合一次函数的形式,故不是一次函数,∴选项A不符合题意;∵形如y=kx+b(k,b为常数).∴y=﹣3x+1中,y是x的一次函数.故选项B符合题意;∵y=2是常数函数,∴选项C不符合题意;∵y=x2+1不符合一次函数的形式,故不是一次函数,∴选项D不符合题意;综上,y是x的一次函数的是选项B.故选:B.【点睛】本题主要考查了一次函数的定义,正确把握一次函数的定义是解题关键.5、C【解析】【分析】根据一次函数的图象与系数的关系即可得出结论.【详解】解:∵一次函数y=-x+4中,k=-1<0,b=4>0,∴函数图象经过一二四象限,∴无论m为何实数,直线y=x+2m与y=-x+4的交点不可能在第三象限.故选:C.【点睛】本题考查的是两条直线相交或平行问题,熟知一次函数的图象与系数的关系是解答此题的关键.6、C【解析】【分析】求出正比函数的解析式,k值的绝对值表示车的速度;横轴上两个时间点的差表示乙走完全程所用时间,求出一次函数的解析式,确定它与正比例函数的交点坐标,横坐标即为二车相遇时间.【详解】设甲的解析式为y=kx,∴6k=300,解得k=50,∴=50x,∴甲车的速度为,∴①正确;∵乙晚出发2小时,∴乙车用了5-2=3(h)到达城,∴②错误;设,∴,∴,∴,∵,∴,即甲行驶4小时,乙追上甲,∴③正确;故选C.【点睛】本题考查了待定系数法确定函数的解析式,函数图像,交点坐标的确定,解二元一次方程组,熟练掌握待定系数法,准确求交点的坐标是解题的关键.7、B【解析】【分析】根据图象可知15分钟后,甲仓库内快件数量为130件,据此可得甲仓库揽收快件的速度,进而得出时,甲仓库内快件数;由图象可知45分钟,乙仓库派送快件数量为180件,可得乙仓库每分钟派送快件的数量,进而得出乙仓库快件的总数量,然后根据题意列方程即可求出两仓库快递件数相同是时间.【详解】解:由题意结合图象可知:15分钟后,甲仓库内快件数量为130件,故①说法错误;甲仓库揽收快件的速度为:(件分),所以时,甲仓库内快件数为:(件,故③说法正确;(分,即45分钟乙仓库派送快件数量为180件,所以乙仓库每分钟派送快件的数量为:(件,故②说法错误;所以乙仓库快件的总数量为:(件,设分钟后,两仓库快递件数相同,根据题意得:,解得,即时,两仓库快递件数相同,故④说法正确.所以说法正确的有③④共2个.故选:B.【点睛】本题考查了一次函数的应用,解题的关键是结合图象,理解图象中点的坐标代表的意义.8、A【解析】【分析】根据一次函数的性质,y随x增大而减小判断即可.【详解】解:知点,在一次函数的图像上,∵-2<0,∴y随x增大而减小,∵,∴,故选:A.【点睛】本题考查了一次函数的增减性,解题关键是明确一次函数y随x增大而减小的性质.9、C【解析】略10、A【解析】【分析】根据一次函数y=3x+a的一次项系数k>0时,函数值随自变量的增大而增大的性质来求解即可.【详解】解:∵一次函数y=3x+a的一次项系数为3>0,∴y随x的增大而增大,∵点(﹣1,y1),(4,y2)在一次函数y=3x+a的图象上,﹣1<4,∴y1<y2,故选:A.【点睛】本题考查了一次函数的性质,掌握,时,随的增大而增大是解题的关键.二、填空题1、2(满足k>0即可)【解析】【分析】根据函数图象经过第一、三象限,可判断k>0,任取一个正值即可.【详解】解:∵正比例函数y=kx(k是常数,k≠0)的图象经过第一、三象限,∴k>0.故答案为:2(满足k>0即可).【点睛】本题考查了正比例函数的性质,解题关键是明确正比例函数y=kx(k是常数,k≠0)的图象经过第一、三象限时,k>0.2、【解析】【分析】利用函数图象得出直线y=k1x+b1在直线y=k2x+b2上方和交点的x的取值范围,即得出结论.【详解】解:∵直线y1=k1x+b1在直线y2=k2x+b2在同一平面直角坐标系中的交点C的横坐标为2,∴x≥2时,直线y1=k1x+b1与直线y2=k2x+b2在上方交于同一点,故答案为x≥2.【点睛】本题考查了一次函数与一元一次不等式,根据函数图象在上方的函数值比函数图象在下方的函数值大,利用数形结合求解是解题的关键.3、##【解析】【分析】把点A(m,3)代入y=2x求解的值,再利用的图象在的图象的上方可得答案.【详解】解: 一次函数y=2x和y=ax+5的图象交于点A(m,3), 不等式ax+5<2x的解集是 故答案为:【点睛】本题考查的是根据一次函数的交点坐标确定不等式的解集,理解一次函数的图象的性质是解本题的关键.4、(不唯一)【解析】【分析】将(-2,2)代入y=kx中,求得k=-1,只要符合条件的函数解析式中的k≠-1即可.【详解】解:将(-2,2)代入y=kx中,得:2=-2k,解得:k=-1,∴符合符合条件的函数解析式可以为y=-2x,答案不唯一,故答案为:y=-2x(不唯一).【点睛】本题考查正比例函数的图象与性质,熟练掌握正比例函数的图象上点的坐标特征是解答的关键.5、3或1【解析】【分析】分两种情况:①当点F在DC之间时,作出辅助线,求出点F的坐标即可求出k的值;②当点F与点C重合时求出点F的坐标即可求出k的值.【详解】解:①如图,作AG⊥EF交EF于点G,连接AE,∵AF平分∠DFE,∴DF=AG=2 在RT△ADF和RT△AGF中,∴RT△ADF≌RT△AGF ∴DF=FG ∵点E是BC边的中点,∴BE=CE=1 ∴AE= ∴ ∴ 在RT△FCE中,EF2=FC2+CE2,即(DF+1)2=(2-DF)2+1,解得,∴点,把点F的坐标代入y=kx得:2=,解得k=3;②当点F与点C重合时,∵四边形ABCD是正方形,∴AF平分∠DFE,∴F(2,2),把点F的坐标代入y=kx得:2=2k,解得k=1.故答案为:1或3.【点睛】本题主要考查了一次函数综合题,涉及角平分线的性质,三角形全等的判定及性质,正方形的性质理,及勾股定解题的关键是分两种情况求出k.三、解答题1、 (1)(2)或【解析】【分析】(1)根据待定系数法求一次函数解析式即可;(2)先求,根据求得,进而根据,进而将的纵坐标代入,即可求得的坐标.(1)直线与x轴交于点,与y轴相交于点,设直线的解析式为则解得直线的解析式为(2)与y轴交于点C,与x轴交于点D,令,则,即令,则,即,,将代入解得将代入解得或【点睛】本题考查了待定系数法求一次函数解析式,求两直线与坐标轴围成的三角形面积,根据一次函数解析式求得坐标轴的交点坐标是解题的关键.2、 (1)(2),(3)或【解析】【分析】(1)由一次函数图象平移的性质得到k=2,再将点代入求出解析式;(2)分别求出y=0及x=0时的对应值,即可得到A、两点坐标;(3)由结合三角形的面积公式得到AP=2AO,即可得到点P坐标.(1)解:设一次函数的解析式为,一次函数图象与直线平行,,过点,∴,,一次函数解析式为;(2)解:把代入得,,,,把x=0代入得,,;(3)解:∵,,AP=2AO=2,-1-2=-3,-1+2=1,或.【点睛】此题考查了一次函数平移的性质,一次函数图象与坐标轴的交点坐标,一次函数与图形面积问题,正确掌握一次函数的综合知识是解题的关键.3、 (1)A型桌椅每套600元,B型桌椅每套800元;(2)购买A型桌椅14套、B型桌椅6套,总费用最少,最少总费用为13400元【解析】【分析】(1)设A型桌椅每套a元,B型桌椅每套b元,根据题意列二元一次方程组并解方程即可;(2)①根据总费用=A型桌椅的费用+B型桌椅的费用建立y与x之间的函数关系式子,再由A型桌椅不少于12套,B型桌椅不少于6套列出一元一次不等式组求解即可得出x的取值范围;②根据一次函数的性质求解即可.(1)解:设A型桌椅每套a元,B型桌椅每套b元,根据题意,得:,解得:,所以A型桌椅每套600元,B型桌椅每套800元;(2)解:①据题意,总费用y=600x+800(20-x)+20×10=-200x+16200,∵A型桌椅不少于12套,B型桌椅不少于6套,∴,解得:12≤x≤14,所以y与x之间的函数关系为y=-200x+16200(12≤x≤14,x为整数);②由①知y=-200x+16200,且-200<0,∴y随x的增大而减小,∴当x=14时,总费用y最少,最少费用为-200×14+16200=13400元,即购买A型桌椅14套、B型桌椅6套,总费用最少,最少总费用为13400元.【点睛】本题考查二元一次方程的应用、一次函数的应用、一元一次不等式组的应用,理解题意,正确列出方程或函数关系式是解答的关键.4、 (1),(2)见解析【解析】【分析】(1)分别令,即可求得点的坐标;(2)根据两点,作出一次函数的图象即可(1)令,则,即,令,则,即(2)过,作直线的图象,如图所示,【点睛】本题考查了一次函数与坐标轴的交点问题,画一次函数图象,掌握一次函数的性质是解题的关键.5、 (1)10,4(2)15.2秒(3)17.5【解析】【分析】(1)由 12秒和20秒水槽内水面的高度可求正立方体的棱长;设注水的速度为xcm3/s,圆柱的底面积为scm2,得到关于x、s的二元一次方程组,可得到水槽的底面面积,即可求解;(2)根据A(12、10)、B(28、20)求出线段AB的解析式,把y=12代入解析式,即可求解;(3)根据水槽内水面的高度下降得体积为正立方体的体积,求出水槽内水面的高度下降,即可得答案.(1)解:由图2得: ∵12秒时,水槽内水面的高度为10cm,12秒后水槽内高度变化趋势改变,∴正立方体的棱长为10cm;由图2可知,圆柱体一半注满水需要28-12=16 (秒),故如果将正方体铁块取出,又经过16-12=4 (秒)恰好将水槽注满,正方体的体积是103=1000cm3,设注水的速度为xcm3/s,圆柱的底面积为scm2,根据题意得:,解得:∴水槽的底面面积为400cm2,∵正立方体的棱长为10cm,∴正立方体的底面正方形的面积=10×10=100 cm2,∴S1:S2=400:100=4:1(2)设线段AB的解析式为y=kx+b(k≠0),将A(12、10)、B(28、20)代入得:,解得:∴y=x+,当y=12时,x+b=12,解得:x=15.2,∴注水时间是15.2秒;(3)∵正立方体的铁块全部拉出水面,水槽内水面的高度下降,设正立方体的铁块全部拉出水面,水槽内水面的高度下降acm,根据题意得:400a=1000,a=2.5,所以铁块完全拉出时,水面高度为20-2.5=17.5cm.【点睛】本题考查了正立方体的体积、圆柱的体积、一次函数的应用,做题的关键是利用函数的图象获取正确信息是解题的关键.
相关试卷
这是一份冀教版八年级下册第二十一章 一次函数综合与测试课后作业题,共25页。试卷主要包含了下列函数中,属于正比例函数的是,已知点,都在直线上,则等内容,欢迎下载使用。
这是一份初中数学冀教版八年级下册第二十一章 一次函数综合与测试同步测试题,共27页。
这是一份2020-2021学年第二十一章 一次函数综合与测试课后作业题,共25页。试卷主要包含了如图,一次函数y=kx+b,已知一次函数y=等内容,欢迎下载使用。